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Soil Moisture and Ocean Salinity (SMOS) is the latest mission which provides flow of coarse resolution
soil moisture data for land applications. However, the efficient retrieval of soil moisture for hydrological
applications depends on optimally choosing the soil and vegetation parameters. The first stage of this
work involves the evaluation of SMOS Level 2 products and then several approaches for soil moisture
retrieval from SMOS brightness temperature are performed to estimate Soil Moisture Deficit (SMD).
The most widely applied algorithm i.e. Single channel algorithm (SCA), based on s–x is used in this study
for the soil moisture retrieval. In s–x, the soil moisture is retrieved using the Horizontal (H) polarisation
following Hallikainen dielectric model, roughness parameters, Fresnel’s equation and estimated
Vegetation Optical Depth (s). The roughness parameters are empirically calibrated using the numerical
optimization techniques. Further to explore the improvement in retrieval models, modifications have
been incorporated in the algorithms with respect to the sources of the parameters, which include effec-
tive temperatures derived from the European Center for Medium-Range Weather Forecasts (ECMWF)
downscaled using the Weather Research and Forecasting (WRF)–NOAH Land Surface Model and Moder-
ate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) while the s is derived
from MODIS Leaf Area Index (LAI). All the evaluations are performed against SMD, which is estimated
using the Probability Distributed Model following a careful calibration and validation integrated with
sensitivity and uncertainty analysis. The performance obtained after all those changes indicate that
SCA-H using WRF–NOAH LSM downscaled ECMWF LST produces an improved performance for SMD
estimation at a catchment scale.

Published by Elsevier B.V.
1. Introduction management, crop productivity, mitigation of natural hazards such
The accurate estimation of soil moisture is important for under-
standing the Earth’s hydrological cycle and ecosystem services
(Cramer et al., 2001). It is a key variable in the water and energy
exchanges that occur at the land-surface/atmosphere interface
and responsible for the evolution of weather and climate over con-
tinental regions (Entekhabi et al., 2010; Mahfouf, 1991). Hence,
global observations of the Earth’s changing soil moisture are
needed to enhance climatic prediction skills, weather forecasting,
assessment of water quantity and quality, agricultural water
as landslides, flood prediction and drought monitoring (Srivastava
et al., 2013b). Soil moisture is an integral component for rainfall-
runoff models and designing water balance equations (Aubert
et al., 2003; Merz and Plate, 1997).

Scientists started research on soil moisture remote sensing from
mid 1970’s shortly after the surge in satellite development
(Laymon et al., 1999). Advances in satellite remote sensing have
offered a variety of techniques for measuring soil moisture
(Engman, 1990). Soil moisture can be estimated through ground
based techniques such as from probe or gravimetric measurements
with limitations that these are currently limited to specific loca-
tions, and hence do not represent the spatial distribution because
soil moisture is highly variable both spatially and temporally
(Srivastava, 2013; Wang and Qu, 2009). Several researchers have
also shown that near surface soil moisture content can be
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measured by optical and thermal infrared remote sensing (Jackson,
1993; Owe et al., 2001; Schmugge et al., 1986; Scott and
Bastiaanssen, 2003). For decades microwave remote sensing has
proven its capability over optical remote sensing for soil moisture
retrieval and that’s the reason two dedicated space missions were
proposed to provide global measurements of soil moisture. The
first is from the European Space Agency, which launched the Soil
Moisture and Ocean Salinity (SMOS) mission in November 2009
and the second, Soil Moisture Active and Passive (SMAP) mission
planned by the National Aeronautics and Space Administration
(NASA) to be launched by 2014.

The L band soil moisture can be retrieved by utilizing a radiative
transfer model to convert brightness temperature from microwave
radiometers to soil moisture using single/dual channel algorithms
(Jackson et al., 1997). Most of the methods for L band soil moisture
retrieval from passive radiometers are based on tau–omega ratio-
nale (de Jeu et al., 2014; Mladenova et al., 2014). The widely
accepted methodology for soil moisture retrieval is based on inver-
sion of geophysical model functions which is also currently used by
SMOS (Jackson et al., 2002; Kerr et al., 2006, 2012). The other
model such as Land Parameter Retrieval Model (LPRM) has been
used by many researchers and well explored on high frequency
microwave datasets (Liu et al., 2012; Su et al., 2011). The most
widely used model for soil moisture retrieval from L band is aingle
channel algorithms (SCA) which uses H and V polarizations sepa-
rately. Likewise as mentioned in Mladenova et al. (2014) both of
the abovementioned soil moisture retrieval models i.e. LPRM and
SCA are based on tau–omega algorithms utilizing similar radiative
transfer equation given by Mo et al. (1982). However, suitability
and reliability of these models for SMOS soil moisture retrieval
for hydrological applications such for SMD estimation is still under
question.

Previous studies have shown that the variation in soil moisture
can be directly linked with land surface temperature (LST) and
Normalized Difference Vegetation index (NDVI) (Goward et al.,
2002; Sandholt et al., 2002). Some authors have also indicated
the estimation of vegetation water content, an integral parameter
for Vegetation Optical Depth (VOD), using satellite datasets such
as Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf
Area Index (LAI) or NDVI (Kerr et al., 2012; Jackson et al., 2002).
After development of optical sensors and mesoscale models such
as WRF, a high resolution LST can be estimated from MODIS and
ECMWF downscaling which could serve as a suitable choice for
soil moisture retrieval using passive microwave data like SMOS.
In this study, attempts have been made to synergistically combine
the SMOS brightness temperature with the MODIS and Weather
Research and Forecasting–NOAH Land Surface Model downscaled
European Center for Medium-Range Weather Forecasts (ECMWF)
LST for the soil moisture retrieval and subsequently use it for
the SMD estimation. The ECMWF and MODIS have been selected
among other operational optical satellites/datasets because of its
suitable characteristics, such as daily temporal resolution and free
near real time availability (Srivastava et al., 2013a; Thakur et al.,
2012). The use of MODIS Leaf Area Index (LAI) is taken into
account for Vegetation Water Content (VWC) estimation, which
is found to be an integral parameter for Vegetation Optical Depth
(s). SMD is used in this study, not storage because the former is
driven by necessity. As compared with storage, SMD has direct
application to drought and flood. A number of agencies in UK
use SMD as an indicator for predicting drought or dryness of the
country such as UK Met office (www.metoffice.gov.uk/), Land
Information System (LandIS) (http://www.landis.org.uk/services/
seismic.cfm), Centre for Ecology and Hydrology Wallingford (http:
//www.ceh.ac.uk/data/nrfa/nhmp/evaporation_smd.html), UK.
Secondly, many rainfall runoff models use SMD as a soil
moisture accounting scheme (Beven and Wood, 1983; Croke and
Jakeman, 2004; Evans and Jakeman, 1998). Therefore, a better pre-
diction of SMD using satellite based soil moisture such as SMOS or
upcoming SMAP could be used for an improved discharge
prediction.

Despite of number of studies in the technical literature domain
there are still many research questions unanswered such as– how
good is the SMOS soil moisture to estimate Soil Moisture Deficit
(SMD)? How much will be the soil moisture retrieval performance
for SMD estimation when WRF downscaled ECMWF LST is used in
the place of MODIS LST as WRF using ECMWF can provide LST at
hourly interval concurrent to SMOS overpass time (6 am/6 pm),
which is not possible with MODIS. Other important parameters
are roughness factors which are difficult to obtain over large scale,
presently they can be obtained either by field experiments or using
land cover based look up table. Therefore, it is good to know the
performance of the optimized roughness parameters for the soil
moisture retrieval instead of using the default one as given in
SMOS ATBD (Algorithm Theoretical Basis Document). To under-
stand all these research questions, this study focuses on the follow-
ing objectives (1) estimation of quality controlled SMD at a
catchment scale through PDM rainfall runoff model; (2) evaluation
of soil moisture retrieval parameters using SCA-H approach by uti-
lizing effective temperatures derived from the European Center for
Medium-Range Weather Forecasts (ECMWF) and Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) land surface temperature
(LST) separately and optimized roughness parameters (3) perfor-
mance assessment of retrieved soil moisture for hydrological
SMD estimation.
2. Materials and methods

2.1. Study area

The Brue catchment (135.5 Km2) chosen as the study area,
located in the south-west of England, 51.11�N and 2.47�W is influ-
enced primarily by the temperate maritime type of climate (Fig. 1).
It is a good experimental site for satellite, mesoscale model based
and rainfall runoff modeling research because of low vegetation
cover (mainly grass), a maintained meteorological and flow station,
moderate topography, and availability of nearly all required data-
sets generally used for any hydrological application and quality
controlled as compared to other U.K. catchments. The river gauging
point of the catchment is located at Lovington. The average altitude
of this catchment is 105 m AMSL. The ground observed data for
this study are obtained from the NERC (Natural Environment
Research Council, U.K.) for the given period. The meteorological
datasets are provided by the British Atmospheric Data Centre
(BADC) that includes wind, net radiation, surface temperature
and dew point.

The soil texture data for the Brue catchment was obtained from
Soil Survey and Land Research Centre (SSLRC), U.K. The observed
hourly rain gauge and river flow data for this study were obtained
from the Environment Agency (U.K.). The observed rainfall in the
Brue catchment used in this study is based on the areal rainfall cal-
culated by averaging 3 rain gauges using the automated Thiessen
polygon method (Han and Bray, 2006). The Probability Distributed
Model (PDM) model is implemented over this catchment to esti-
mate the SMD using a two-year calibration period (1st February
2009 to 31st January 2011) and one-year for validation (1st Febru-
ary 2011 to 31st January 2012). For validation, SMD is taken into
account for comparison with the SMOS retrieved soil moisture.
The detailed information on PDM calibration, validation, sensitivity
and uncertainty analysis over Brue is mentioned in Section 3.1
while a more detailed analysis is reported in (Srivastava et al.,
2013a).
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Fig. 1. Layout of the study area with meteorological station, rain, flow gauges and WRF domains.

576 P.K. Srivastava et al. / Journal of Hydrology 519 (2014) 574–587
2.2. Dynamic datasets from ECMWF and MODIS

2.2.1. WRF–NOAH LSM downscaling using ECMWF datasets
The latest Weather Research and Forecasting model coupled

with NOAH Land Surface Model (LSM) is used in this study with
the Advanced Research WRF (ARW) dynamic core version 3.1
(Powers, 2007; Schwartz et al., 2009) for LST estimation. The origi-
nal LSM was developed at the Oregon State University (OSU) by
Pan and Mahrt (1987) and modified by Chen et al. (1996). It
includes an explicit canopy resistance formulation (Jacquemin
and Noilhan, 1990) and a surface runoff scheme provided by
Schaake et al. (1996). The soil water movement and flow in the
NOAH LSM is governed by the mass conservation law and the
diffusivity form of Richards’ equation. A more detailed description
of the WRF–NOAH LSM can be found in Chen and Dudhia (2001).
The main physical options used in the WRF setup are the Dudhia
shortwave radiation (Dudhia, 1989) and Rapid Radiative Transfer
Model (RRTM) long wave radiation (Mlawer et al., 1997) with Lin
microphysical parameterization; the Betts–Miller–Janjic Cumulus
parameterization schemes; the Yonsei University (YSU) planetary
boundary layer (PBL) scheme (Hu et al., 2010). The 3rd-order
Runge–Kutta is used for the time integration while for spatial
differencing scheme the 6th-order centered differencing scheme
is used. The Arakawa C-grid is used for the horizontal grid distribu-
tion. The thermal diffusion scheme is used for the surface layer
parameterization. The top and bottom boundary conditions chosen
for the study are Gravity wave absorbing (diffusion or Rayleigh
damping) and Physical or free-slip respectively. The Lambert
conformal conic projection is used as the model horizontal
coordinates. The vertical coordinate g is defined as:

g ¼ ðpr � ptÞ
ðprs � ptÞ

ð1Þ

where pr is pressure at the model surface being calculated; prs is the
pressure at the surface and pt is the pressure at the top of the model.
In the vertical 28 terrain the following eta levels (eta levels = 1.000,
0.990, 0.978, 0.964, 0.946, 0.922, 0.894, 0.860, 0.817, 0.766, 0.707,
0.644, 0.576, 0.507, 0.444, 0.380, 0.324, 0.273, 0.228, 0.188, 0.152,
0.121, 0.093, 0.0.069, 0.048, 0.029, 0.014, 0.000) from surface are
used. These eta levels are used in this study because of their better
representation of the topography (Black, 1994; Routray et al., 2010).

The WRF–NOAH LSM model is centered over the Brue catch-
ment with three nested domains (D1, D2 and D3) with horizontal
grid resolutions of 81 km, 27 km and 9 km, in which the innermost
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domain (D3) is the area of interest. The smallest domain is taken
into consideration firstly to avoid any spatial mismatch problem
as it is closest to the catchment under study and secondly many
researchers have found that the downscaled results are much
improved (Heikkilä et al., 2011; Lo et al., 2008), hence higher res-
olution domain i.e. D3 is utilized in this study. The three domains
consist of 18 � 18, 19 � 19, and 22 � 22 horizontal grids for
Domains D1, D2 and D3 respectively. A two-way nesting scheme
is used allowing information from the child domain to be fed back
to the parent domain. The WRF model configuration used in this
study is shown in Table 1 (Srivastava et al. (2013d). The WRF
domains used in this study is shown in Fig. 1.

2.2.2. MODIS satellite derived datasets
The MODIS (Moderate Resolution Imaging Spectroradiometer)

satellite products are used in this study for estimating soil mois-
ture retrieval parameters such as s and LST. The MODIS Level 3
(�5.6 km) LST data are gridded uniformly across the globe with
near real time availability and hence used in this study. In order
to use the MODIS products, which are downloaded from MODIS
LPDAAC https://lpdaac.usgs.gov/, and make it suitable for Brue
catchment, we averaged the data using the Brue boundary using
ENVI ITT version 4.8 and then determined the mean available
MODIS observations over the Brue catchment. Both the SMOS
and MODIS Terra are low Earth orbiting satellites and have local
equatorial crossing times of approximately 6 am/6 pm for SMOS,
and 10:30 pm/10:30 am for Terra, in ascending/descending nodes
(Sánchez-Ruiz et al., 2014). In this study, SMOS descending passes
are combined with MODIS Terra ascending passes. It is therefore
assumed that the soil moisture pattern is spatially persistent for
a few hours before and after the SMOS overpass (Sánchez-Ruiz
et al., 2014). Further, it is also useful to mention over here that a
significant correlation was observed between LST and SMOS soil
moisture in previous study over the same site by Srivastava et al.
(2013a), hence we assume that the LST will not change much with
Table 1
WRF model configuration.

Initial conditions Three-dimensional real-data (1� � 1� FNL)
Map projection Lambert
Central point of

domain
Central latitude: 51.11�N

Central longitude: 2.47�W
Domain Three domains
Horizontal grid

distribution
Arakawa C-grid

Horizontal grid
distance

Domain 3 (9 km)

NCEP time interval 6 h
Model output Hourly
Nesting 2 way
Time integration 3rd-order Runge–Kutta
Spatial differencing

scheme
6th-order centered differencing

Lateral boundary
condition

Specified options for real-data

Top boundary
condition

Gravity wave absorbing (diffusion or Rayleigh
damping)

Bottom boundary
condition

Physical or free-slip

Microphysics Lin
Radiation scheme Dudhia’s short wave radiation/RRTM long wave
Surface layer

parameterization
Thermal diffusion scheme

Cumulus
parameterization
schemes

Betts–Miller–Janjic

PBL parameterization YSU scheme
Vertical coordinate Terrain following hydrostatic pressure coordinate

(28 sigma levels up to 1 hPa)
depth for the effective soil moisture retrieval. Ideally, the temper-
ature of the soil moisture sampling depth should be same as used
to normalize the satellite observations, but it is not always possible
in real environmental conditions (Owe et al., 2001). Moreover,
there are rare satellite based LST products available exactly concur-
rent to SMOS overpass time and this is one of the major limitations
in the soil moisture retrievals using MODIS datasets. Nevertheless,
it can be used because of its near real time global availability and
easy data processing. To overcome this limitation dynamical
downscaling model (WRF) is used to estimate the LST using
ECMWF global datasets concurrent to SMOS overpass time. For
testing the retrieval algorithms, WRF downscaled ECMWF and
MODIS land surface temperature (LST) products with a multitude
of SMOS soil moisture are used separately with each algorithms.

The other important dynamic dataset that is very important in
soil moisture retrieval is Leaf Area Index (LAI) which has been
derived from MODIS LAI (MOD15) product. The MOD15 was devel-
oped jointly by Boston University, the University of Montana and
NASA Goddard Space Flight Center. The temporal frequency of
MOD15 is every 8th day as the reflectance and ancillary data on
surface characteristics such as land cover type, background data-
sets, and other weather parameters etc are mostly available at this
interval. As the data is not available daily and it is assumed that the
minimal changes occur within 8 days in LAI, hence a constant forc-
ing value is taken for every 8 days period.

2.2.3. SMOS datasets
The SMOS was launched by European Space Agency (ESA) on

2nd November 2009. The MIRAS instrument in the SMOS satellite
acquiring data at the frequency of 1.4 GHz (L-band), is a dual
polarized 2-D interferometeric radiometer designed to provide glo-
bal information on surface soil moisture with an accuracy of 4%
(Kerr et al., 2001). In this study, SMOS Level 2 product and Level
1C SMOS Brightness temperature is used. The SMOS products are
defined on the ISEA4H9 grid, i.e. Icosahedral Snyder Equal Area
projection with aperture 4, resolution 9 and its shape of cells as
hexagon (Pinori et al., 2008). The spatial resolution of the instru-
ment is �40 km with the brightness temperature retrieval unit in
Kelvin. Each point (or node) of this grid is known as a DGG
(Discrete Global Grid) with fixed coordinates and is assigned with
an identificator the ‘‘DGG Id’’.

In this study the brightness temperatures are retrieved at the
incidence angle 42.5� which is then used for the soil moisture
retrieval. For the comparison between the catchment SMD and soil
moisture, the SMOS brightness temperature pixel centred over the
catchment is extracted and considered for the subsequent analysis.
All the outputs of SMOS level 2 products were also retrieved at
42.5� and to make soil moisture retrieval from brightness temper-
ature consistent to SMOS level 2, all the soil moisture observations
are retrieved at this angle only. This angle is chosen because SMOS
has the best temporal coverage at 42.5�. This angle is obtained by
linear interpolation of all TB acquired at an angle between 37.5�
and 47.5� to 42.5� (Kerr et al., 2012). The Beam 4.9 package with
SMOS 2.1.3 plugin is used for all the data extraction. Most of the
datasets extracted here are through growing season (most of the
summer) and in clear sky conditions. The other soil moisture
retrieval parameters specifically the MODIS LST, LAI are also found
available during this period without any contamination.

2.3. Land use/land cover, soil texture and DEM

Land Use/Land Cover (LULC) analysis is vital for understanding
the soil moisture retrieval algorithm development. The most pop-
ular Landsat TM is used in this study for the identification of land
use/land cover. The Landsat TM images used in this study are
acquired from www.usgs.gov.in with nearly 0% cloud cover over

https://lpdaac.usgs.gov/
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the region. The sophisticated Artificial Neural Network is used in
this study for the derivation of LULC because of its better perfor-
mance compared with other classification techniques (Srivastava
et al., 2012b). The neural network classifier used was a layered
feed-forward model in ENVI (Environment for Visualizing Images)
version 4.8 (ITT Visual Information Solutions SA) with standard
back propagation for supervised learning. The ANN weights were
initialized using a uniform distribution. Learning rate was set to
100 for the hidden layer and 0.01 for the output layer, while
stopping criterion is fixed to 0.001. The typical logistic activation
function can be expressed as Eq. (2) (Islam et al., 2014):

oj ¼ 1=ð1þ e�knetj Þ ð2Þ

where oj is the output of external input j, k is a gain factor. The term
netj can be computed using Eq. (3) (Islam et al., 2014):

netj ¼
X

i

wjioi ð3Þ

where wji is the weight of interconnection channel to unit j from
unit i and oi is the output of external unit i.

Land use/land cover of the area indicates that the most of the
catchment is pasture land (94.34%), with a few patches of forest
(3.48%) and urban areas (2.18%). There are some patches of wood-
land in the higher eastern part of the catchment. It is a predomi-
nantly rural catchment with spring-fed headwaters rising in the
Mendip Hills and Salisbury Plain (Fig. 2(a)). The DEM data used
in this study are obtained from Digimap, an EDINA service (data
library service at the University of Edinburgh) delivering Ordnance
Survey map data to the higher education in the U.K. The data is
derived from an ordnance Survey data product available in Land-
Form PANORAMA data at a 1:50000 scale DEM form. The DEM
on a 50 m grid scale is then generated using the ArcGIS 9.3, shown
in Fig. 2(b). Most of the area shows a modest relief and hence can
be characterized as a non-complex topography area. A high resolu-
tion 100 m soil texture map for the Brue catchment has been
obtained from the Soil Survey and Land Research Centre (SSLRC)
(Fig. 2(c)). SSLRC datasets can be obtained through LandIS, which
is the national computerised database system for soil and related
land information in England and Wales, U.K. The distribution of soil
from SSLRC maps indicates that the most of the area comprises of
clayey soil type (49%) followed by coarse loam 29% and silt 21%.

2.4. Single channel algorithms using tau–omega (s–x)

The generalized Radiative Transfer Equation (RTE) in terms of
all main factors can be expressed as given by Mo et al. (1982):

TBP ¼ TBatuþTBsp expð�satuÞþðTBatdþTBsk expð�satdÞÞrsp expð�satuÞ
ð4Þ

where ‘‘p’’ subscript indicates the polarisation (H or V). The atmo-
spheric opacities satu and satd are the upward and downward path
attenuating constituents, TBsk is the sky background, rsp is surface
reflectivity, TBatd and TBatu are downward and upward atmospheric
radiation components respectively. The signal measured by a pas-
sive microwave sensor at L-band can be expressed as a function
of soil moisture, vegetation optical depth and effective surface
temperature.

The surface characteristics, like soil texture and land use, can be
obtained from static maps while others, like temperature are
obtained from ECMWF reanalysis datasets or by using optical
remote sensing such as MODIS. The algorithm presented here is
for the surfaces having low vegetation. The area is considered to
be a short vegetation area because it is mostly occupied by pasture
land. At L band, the approximated form of RTE is considered as s–x
model. This model is based on two parameters i.e. the vegetation
optical depth, s and the vegetation scattering albedo, x that are
used to parameterize the vegetation attenuation properties and
the scattering effects within the vegetation layer. The low vegeta-
tion s�x model can be expressed as:

TBP ¼ ð1�xpÞð1� cpÞð1þ cprgpÞTc þ ð1� rgpÞcpTg ð5Þ

where Tg and Tc are the effective soil and vegetation temperatures,
rgp is the soil reflectivity, xp the single scattering albedo, cp the veg-
etation attenuation factor. The last term can be computed from the
optical depth sp as:

cp ¼ expð�sp= cos hÞ ð6Þ

For surface temperature, it is assumed that effective soil (Tg)
and vegetation (Tc) temperatures are approximately equal to a
single value Tgc � Tc � Tg. An estimate of an effective composite
temperature Tgc (including both soil and vegetation media) could
be derived by the following equation:

Tgc ¼ AtTc þ ð1� AtÞTg ð7Þ

where At = Bt(1 � exp (sNAD)) following the condition: 0 6 At 6 1.
Where sNAD VOD at nadir. For low vegetation the coefficient Bt

can be replaced by the default value of Bt = 1.7. For the scattering
effects at L-band, the value of the single scattering albedo, x is
found to be rather low and sometimes assumed equal to 0.05. To
model the optical depth, sp, several studies found that
sp = bp � VWC where VWC is the vegetation water content and bp

is a factor which is mainly dependent on the frequency, the canopy
type, and the vegetation dielectric constant (Jackson and
Schmugge, 1991).

At 1.4 GHz, a value of bp = 0.12 ± 0.03 was found to be represen-
tative of low vegetation and also, recent studies found good corre-
lations between sp and LAI (Kerr et al., 2012). Hence in this study
LAI based sp is taken into account (Kerr et al., 2012). The VWC from
LAI can be estimated following the approach developed by
Wigneron et al. (2006, 2007). For herbaceous vegetation, VWC
was linearly related to the Leaf Area Index and could be estimated
from global LAI data given by the existing maps derived from
remote sensing observations such as from MODIS. An analysis
made over agricultural crops from the Institut National De La
Recherche Agronomique (INRA) data sets has shown that the
VWC/LAI ratio is about 0.5 kg/m2 (Wigneron et al., 2006) when
the vegetation is well-developed. Hence, in this study the VWC is
taken equivalent to 0.5 times of LAI. After estimating the VWC, sp

is determined with the value of bp equal to 0.13. Soil reflectivity
is highly dependent on soil and vegetation characteristics repre-
sented by the roughness parameter. The parameters that charac-
terize the roughness are known as the h and Q parameters and
quite difficult to obtain over a terrain. The roughness parameters
(h and Q) are obtained by optimization using the s–x model
following the Levenberg Marquardt (LM) algorithm and by
maximizing the correlation between SMD and soil moisture.

2.5. PDM and soil moisture deficit

The PDM model from CEH Wallingford is employed as a rainfall
runoff simulation model in the case study, as it is capable of
accounting for soil moisture in the system with an appropriate
time step and inputs of data required for use in hydrological mod-
eling. The PDM has been widely applied throughout the world for
runoff prediction and currently in use for both operational and
design purposes (Bell and Moore, 1998). It is under the category
of lumped rainfall-runoff model capable of representing a variety
of catchment-scale hydrological behaviors and requires only rain-
fall and reference evapotranspiration (ETo) for discharge prediction
(Liu and Han, 2013). The model conceptual structural work flow of



Fig. 2. Derived LULC (a), DEM (b) and soil texture (c).
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PDM is depicted through Fig. 3. In this study, the PDM is used for
SMD estimation through its moisture deficit routine (Moore,
2007):

E0i
Ei
¼ 1� ðSmax � SðtÞÞ

Smax

� �be

ð8Þ

where E0i
Ei

is the ratio of actual ET to potential ET; and (Smax � S(t)) is
Soil Moisture Deficit; be is an exponent in the actual evaporation
function; Smax is the total available storage and S(t) is the storage
at a particular time t. The model structure of PDM is further dis-
cussed in (Moore, 2007). The PDM model parameters available in
PDM are shown in Table 2.

Sensitivity analysis (SA) and uncertainty analysis (UA) are con-
sidered to be an important tool in hydrological predictions
(Blasone et al., 2008; Zheng and Keller, 2007). It has gained popu-
larity in the hydrological community (Beven and Binley, 2006;
Srivastava et al., 2013e; Yatheendradas et al., 2008) to explore
the high dimensional parameter spaces, structural uncertainty
and also to understand the sources of uncertainty. As hydrological
models are increasingly being used, it is now very important for
these models to pass through a rigorous and careful calibration
and uncertainty analysis (Jin et al., 2010; Yang et al., 2008) and
thus facilitate a good modeling practice for hydrological predic-
tions. Hence, to test the quality of PDM predictions, it is integrated
with Bayesian based Generalised Likelihood Uncertainty
Estimation (GLUE). The main advantage with the GLUE parameter
uncertainty is that it takes into account all sources of uncertainties
either explicitly or implicitly (Beven and Binley, 2006; Zheng and
Keller, 2007). After a rigorous and careful calibration, the SMD
datasets are predicted and used for the subsequent analysis. The
details of the outputs are mentioned in Section 3.1.
2.6. Performance analysis

In this study the SMOS soil moisture retrieved using the above-
mentioned models is compared with the PDM SMD. Although there
are many statistics available, five of them (Nash Sutcliffe Efficiency
(NSE) (Nash and Sutcliffe, 1970), Square of correlation (R2), Root
Mean Square Error (RMSE), Standard Deviation (SD) and Correla-
tion (r) are used in this study. NSE is used as an objective function
for PDM calibration and validation because it is the most widely
used criterion for checking the efficiency of the hydrological mod-
els. Many authors compared the performance of different perfor-
mance indices in hydrological modeling and indicated that using
NSE generally is more reliable than using any other indices
(McCuen et al., 2006; Krause et al., 2005). Hence, the performance
of the PDM model is judged by the NSE coefficients as an objective
indicator. It is based on the sum of the absolute squared differences



Fig. 3. The workflow of the PDM rainfall runoff model (Moore, 2007).

Table 2
The PDM model parameters.

Symbol Units Model parameter

fc none Rainfall factor
Cmin mm Minimum store cap
Cmax mm Maximum store ca
b none Exponent of pareto

spatial variability o
be none Exponent in actual
k1 and k2 h Time constants of c

kb h mmp�1 where p is the store exponent Base flow time con
kg h mmbg�1 Groundwater recha
St mm Soil tension storage
bg none Exponent of rechar
qc m3 s�1 Constant flow repr
sd h Time delay
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between the simulated and observed values normalised by the var-
iance of the observed values during the investigation period. The
Nash–Sutcliffe Efficiency (NSE) is calculated using:

NSE ¼ 1�
Pn

i¼1½yi � xi�2Pn
i¼1½xi � xi�2

ð9Þ

where xi is observed flow and yi is simulated flow.
The correlation, RMSE and SD are expressed in the form of Tay-

lor diagram (Taylor, 2001) for SMD prediction derived using
regression models. In a Taylor diagram, instead of using RMSE
directly, it uses a plot in the form of various sectors represented
as centered root-mean-square difference. It provides a way of
graphically summarizing how closely a pattern matches observa-
tions. The similarities between two patterns are quantified in
terms of their correlation, their centered root-mean-square differ-
ence and the amplitude of their variations (represented by their
standard deviations). The circle mark in the x-axis, called reference
point, represents the perfect fit between model results and data.
The position of the labels, representing the results of the different
Optimum value Range
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Table 3
Description of the approaches with roughness parameters (h and Q).

Approaches Description h Q

Approach 1 SCA-H, Roughness parameter as suggested in
SMOS ATBD, MODIS LST

0.2 0

Approach 2 SCA-H, Roughness parameter using optimisation
solution, MODIS LST

0.4 0.13

Approach 3 SCA-H, Roughness parameter as suggested in
SMOS ATBD, WRF LST

0.2 0

Approach 4 SCA-H, Roughness parameter using optimisation
solution, WRF LST

0.45 0.15

SMOS Level
2

SMOS ATBD 0.2 0
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runs, is determined by the values of the correlation r and of the
standard deviation (SD) of the modeled data. The closer a label to
the reference point is the better the performance of the run is.
The tendency to over/under estimate the observed values can also
be indicated by the Taylor diagram, generally when the standard
deviation of the simulated data is higher than that of the observed
values an overestimation can be identified and vice versa.
Fig. 6. Correlation matrix plots betwee
3. Results and discussion

3.1. Soil Moisture Deficit estimation from PDM model

For the calibration of the PDM model, as mentioned in the
methodology, two years of data (February 1, 2009 to January 31,
2011) are used, while for the validation data of one year (February
1, 2011 to January 31, 2012) is taken into account. The optimal sep-
aration of slow and fast runoff components are taken into account
for PDM calibration (the slow component refers to ground water
recharge from soil water drainage routed through subsurface stor-
age while the fast component belongs to direct runoff) along with
the estimation of storage time constants (Srivastava et al., 2012a,c).
The PDM parameters used in this study for initialization are indi-
cated in Table 2 with the ranges used and the optimal values.
The model was validated by simulating one year continuous time
n MODIS LST, WRF LST and SMD.
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series data. The hydrographs indicate that at some points the
model performance can be poor especially on the low-flow portion
of the hydrograph where the model is unable to adequately repre-
sent the nonlinear processes evident in the recession curves and
low flows. However during most of the monitoring period the
Fig. 8. Performances of SCA-H algorithms with different soil moisture retrieval param
between SMD and retrieved soil moisture.
PDM model performance is relatively good. The time series
between rainfall and flow during the calibration and validation
period are shown in Fig. 4. The overall analysis indicates a NSE
value of 0.84 during the calibration and 0.81 for the validation.
The relevant important variable used in this model is the SMD esti-
mated after calibration and validation of the PDM model. SMD
from PDM is used as validation given the fact that the PDM is able
to simulate the hydrological processes in the catchment and
although the model is calibrated using flow, SMD is an important
component of the PDM model. Therefore, SMD is not directly mea-
sured, but it can be reliably estimated using the PDM model. This
SMD is used to distribute rain to the various types of runoff. If
the SMD is low then a sizeable portion of runoff will occur as fast
runoff and the remainder to slow base flow as groundwater runoff
(Moore, 2007).

In similar studies, the sensitivity analysis and uncertainty esti-
mation of the PDM model for Brue catchment is discussed briefly
by Srivastava et al. (2013e). In this analysis, the cumulative distri-
bution estimated for every time step is used to derive the predic-
tion limits for the discharge. The result of a wider confidence
boundary suggests that the parameter values are associated with
equally good performances and are distributed widely over the
parameter space (Yang et al., 2008), whereas the narrow boundary
limits show that the best performing parameters are concentrated
eters depicted through Pearson and Spearman correlation matrix plot, estimated
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in a smaller area. The analysis reveals that the PDM model tends to
match the observed hydrographs quite well with some lower per-
formance seen in low flow conditions. The goodness of calibration
and prediction uncertainty is judged on the basis of the p-factor
(observations bracketed by the prediction uncertainty) and the
r-factor (achievement of small uncertainty band). The plot obtained
from the 95% Uncertainty Band (95UB) based on the parameter
uncertainty is quite satisfactory (r-factor => calibration = 0.68;
and validation = 0.65) and parameter uncertainty and uncertainty
sources represented by the GLUE model bracketed more than
84% of the observed points for calibration and 71% for the valida-
tion periods (p-factor), reveals a satisfactory model performance
for this catchment (Srivastava et al., 2013d).

3.2. Soil moisture retrieval parameters

The main soil moisture retrieval parameters used in this study
are land surface temperature (LST), MODIS LAI, roughness param-
eters (h and Q) and vegetation scattering albedo (x). In this study
the LST is estimated through MODIS and WRF–NOAH LSM down-
scaled ECWMF datasets and separately used for moisture retrieval
performances following the RTE. The MODIS LAI is used for VOD
estimation and fixed for all retrieval trials. The roughness parame-
ters are estimated through locally optimising the algorithm
(SCA-H) and the default value is also used as given in SMOS ATBD
document for low vegetation cover. The default value of 0.05 for
vegetation scattering albedo is used. The trend obtained with
SMD, WRF and MODIS LST is shown in Fig. 5. The analysis revealed
a similar pattern between both the datasets and gave a similar
response with SMD. The result shows that when soil temperature
is high, SMD is also greater indicating that both are related to each
other. The correlation matrix plot is shown in Fig. 6. The correlation
analysis indicates a higher linearity of MODIS LST with SMD while
the WRF LST shows possibility of non-linearity with the SMD
because of existing differences between the Pearson and Spear-
man’s correlation. In previous studies many authors have shown
that at low frequencies when surface roughness condition is
unknown, a value of zero is often assigned to the Q parameter
and for low vegetation it is recommended to use the value of
�0.05 for Q and �0.2 for h which are suitable for most of the con-
ditions (Jackson, 1993; Wang et al., 2009). However, after optimi-
zation using the Levenberg–Marquardt (LM) algorithm the range
of h is found to be between 0.1–0.4 and for Q it is between 0.03
and 0.15 with different input parameter conditions.

The LAI is estimated from the MOD15 product available on
8 days basis. Here we assumed that the LAI is persistent for 8 days
because of very low vegetation activities, hence the LAI forcing for
soil moisture retrieval is changed in the algorithms every 8 days.
The LAI is used for the VOD estimation by means of simple empir-
ical relations as suggested by Jackson and Schmugge (1991) and
Wigneron et al. (2002). Here in this study, the LAI is firstly con-
verted to VWC using the relationship as mentioned in (Wigneron
et al., 2002) and then VWC is converted to s using the constant
as suggested for low vegetation by Jackson and Schmugge



Fig. 10. Validations plots for the approaches and SMOS level 2 with SMD.
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(1991), discussed in Section 2.4. It should be pointed out that there
is a mismatch between the study catchment and SMOS pixels.
Ideally, it would be great if SMOS pixels and the study catchment
area are of the same size. However, this mismatch of catchment
sizes and hydrological measurements are expected in practice as
catchments always have irregular shapes sometime bigger and
sometime smaller than a SMOS pixel. In practice, the mismatch
can be minimized using regression fitting models as long as SMOS



Fig. 11. Taylor plots for performance measurement during validation.
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derived SMD is able to provide useful soil moisture information for
hydrological modeling. The different approaches used in this study
are summarized in Table 3 along with the values of roughness
parameter used and small description of the approaches.

3.3. Performances of the algorithms

The brightness temperature (TB) retrieved for SMOS Level 1C
scenes over Brue are shown in Fig. 7 with respect to H and V chan-
nels. The TB result indicates that in most of the cases H and V polar-
isations are following the criteria TB < 340 K and MPDI > 0.0 which
indicates that the selected brightness temperature is of reasonable
quality to use in this study. The results are presented for single chan-
nel using H and V polarisations. The scatter plots of input data are
presented to identify how the changes in the soil moisture retrieval
parameters influence the algorithm performance. From the data
analysis, it can be revealed that the results are sensitive to the selec-
tion of the h and Q parameters. By using the optimized h and Q data-
sets the results are highly improved as compared with the global
values as given in SMOS ATBD document (Kerr et al., 2006).

The scatter plots representing the performances of different
approaches in terms of correlations are shown in Fig. 8. The notable
things observed in this work are the some lower performance of
SMOS L2 with SMD. It could be possible as SMOS L2 is based on
global default parameters which are not true everywhere, in case
more accurate input parameters are available from local condi-
tions, performance should be improved. All the plots indicate an
inverse relation with the SMOS SMD; hence a negative correlation
is expected between the estimated soil moisture and SMD. The
best correlation statistics are given by the H polarization
approaches such as approach 4 (r = �0.55) followed by approach
2 (r = �0.52), approach 3 (r = �0.47) and approach 1 (r = �0.41).
The SMOS L2 correlation performance is similar to approach 1
which indicates the LST conditions used in SMOS ATBD are similar
to MODIS measurements. It may be noted that some pixels with a
high amount flooding conditions can be attributed to the seasonal
behavior of large rivers or large rain events causing significant
ponding (Kerr et al., 2012). Another source of error can be linked
to water bodies. The dynamics of water bodies is very unpredict-
able because of seasonal variations, floods or freezing.

3.4. Soil Moisture Deficit estimation using empirical relationships

The scatter plots for the datasets are depicted in Fig. 10 along
with the estimated Pearson and Spearman correlations. The two
correlation statistics are calculated to make sure the linear and
nonlinear choices for the model development. The Spearman
(rspearman) and Pearson (rpearson) correlation statistics between SMOS
soil moisture which yields nearly similar values, indicate that there
is no strong nonlinearity existed and linear curve fitting could be a
useful choice because of its simplicity (Blumer et al., 1987). The lin-
ear model estimated using the PDM SMD and soil moisture from
various algorithms during the calibration are used for developing
an empirical relationship using linear regression model. For deriv-
ing the relationship, the calibration and validation datasets are first
divided into two lots. From each month, two thirds of the data are
taken as calibration and the other third as validation, so that both
calibration and validation data are representative of all the sea-
sons. The results of only SCA-H approaches are presented through
scatter plots, however in Taylor plot all the performances are
reported estimated during the validation. The linear curve fitting
used for calculation of the empirical relationships are shown in
Fig. 9, while the validation results obtained by applying the linear
curve fitting equations are presented through Fig. 10. The square of
correlation during the calibration indicates a value of R2 = 0.359 for
approach 4 followed by the approach 2 (R2 = 0.293), approach 3
(R2 = 0.267) and approach 1 (R2 = 0.163). Similarly, during the val-
idation a higher performance is reported by approach 4 and a com-
parable trend is obtained like calibration with other SCA H
approaches. The higher performance of approach 4 can be attrib-
uted to a low impact of roughness on H polarisation and also to
an accurate estimation of LST using the WRF–NOAH LSM which
is further supplemented by the optimised solutions of h and Q.

The Taylor plot (Fig. 11) is used here to show the ability of the
performance of all the approaches used in this study in comparison
to the PDM SMD during the validation. The circle mark in the x-axis
in the Taylor plot, called the reference point, closer to this point
represents the perfect fit between algorithm results and data.
The tendency to over/under estimate the PDM SMD is also indi-
cated by the Taylor diagram, generally when the standard devia-
tion of the simulated SMD is higher than that of the observed
values an overestimation can be predicted and reverse is the case
for underestimation. The Taylor plot shows that in validation a
higher performance of approach 4 is reported. The statistics
obtained are evident for a better performance in the case of WRF
LST and optimised solution for roughness parameters. It shows that
the SCA-H algorithm with WRF LST and roughness modification
has a higher performance than the SMOS level 2 products for
SMD estimation and could be a suitable choice for soil moisture
retrieval for hydrological applications. The higher performance of
WRF LST can be attributed to more accurate representation of sur-
face temperature (similar to SMOS overpass time) and because of
sophisticated numerical parameterization schemes. Close vicinity
of the approaches using MODIS optimized solution is also seen
with slight underestimation. In spite of the mismatch between
SMOS and hydrological SMD in space (�40 km grid vs. about
�12 km grid) and with depth (land surface vs. deep soil layer),
the approaches mentioned above have justifiable performances
because the SMOS data are transformed by the regression models
through the correlation between the SMOS retrieved soil moisture
and hydrological SMD.
4. Conclusions

In-situ observations of soil moisture are currently restricted to
specific locations, and such measurements do not represent the
spatial variation over a large area and are therefore insufficient
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for regional and global studies. The promising solution for large
scale soil moisture measurements is satellite based approaches
such as microwave using low frequency (L band radiometers).
The essential soil moisture retrieval parameters are soil roughness,
LST and VOD. The efficient estimation of these parameters is found
to be very important for improved soil moisture retrieval for SMD
estimation. However these parameters are difficult to obtain
because of their highly variable nature. The soil moisture retrieval
parameters such as LST and VOD can be simulated using MODIS or
mesoscale model based products. As a mesocscale model the WRF–
NOAH LSM is used in this study which can provide the dynamic
datasets for soil moisture retrieval. The initial evaluation of SMOS
L2 using the correlation statistics between SMOS soil moisture and
PDM SMD indicates that SCA H gives a better performance than the
original SMOS L2 product using WRF–NOAH LSM downscaled data-
sets. The high performance of WRF–NOAH LSM downscaled LST
could be attributed to its nearly same temporal resolution as com-
pared to SMOS overpass than MODIS. All the algorithms produce
better results with locally calibrated roughness parameters
because they represent the conditions more accurately as com-
pared with the default global values. However, these locally cali-
brated methods are not sufficient everywhere and hence a more
accurate method for global use is required which could be possible
through regionalization approaches (Han and Jaafar, 2013).

In comparison between all the available datasets, it is worth-
while to mention that the MODIS data require least calculations
for estimation of soil moisture retrieval parameters as compared
to WRF–NOAH LSM downscaling which require a more rigorous
calculations and expertise. Further the estimation of the datasets
from WRF–NOAH LSM is computationally more expensive than
MODIS. There is still room in which the microwave remote sensing
of soil moisture can be improved. One factor is vegetation scatter-
ing albedo. The soil moisture retrieval complexity increases when
the soil is covered by vegetation, as emissivity is severely attenu-
ated by the height of the canopy layer: it absorbs and scatters
the radiation emanating from the soil and also adds its own contri-
bution. The solution such as inclusion of first order vegetation scat-
tering solution for albedo could be promising for efficient soil
moisture retrieval. The other challenges of retrieval or inversion
techniques are to reconstruct the environmental parameters from
the measured signal by using a minimum of auxiliary data. The
more research in the technical literature domain is required for
the auxiliary data generation. The current formulation used in
study is only suited for zero order solution. Future research will
focus on estimating soil moisture using the first order solution
and improvement of auxiliary datasets.

This study provides hydrologists with valuable information on
roughness parameter estimation, WRF model uses and its applica-
bility for soil moisture retrieval, in agreement to hydrological
model based product. However, further exploration of this poten-
tially valuable data source by the hydro-meteorological commu-
nity is recommended so that useful experience and knowledge
could be accumulated in the technical literature domain for other
geographical locations and climatic conditions.
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