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AN UPPER BOUND ON HIGH SPEED SATELLITE COLLISION 
PROBABILITY WHEN ONLY ONE OBJECT HAS POSITION 

UNCERTAINTY INFORMATION 

Joseph H. Frisbee, Jr.* 

Upper bounds on high speed satellite collision probability, PC
†, have been inves-

tigated.  Previous methods assume an individual position error covariance ma-
trix is available for each object. The two matrices being combined into a single, 
relative position error covariance matrix.  Components of the combined error 
covariance are then varied to obtain a maximum PC.  If error covariance infor-
mation for only one of the two objects was available, either some default shape 
has been used or nothing could be done.  An alternative is presented that uses 
the known covariance information along with a critical value of the missing co-
variance to obtain an approximate but potentially useful Pc upper bound. 

INTRODUCTION 

A standard assumption in the tracked orbital debris collision risk problem is that an individual 
position error covariance matrix is available for each of the two objects involved in the close ap-
proach.  The two matrices are combined into a single, relative position error covariance matrix1.  
The combined position error covariance matrix may then be modified to arrive at a maximum PC.  
There are various modification schemes along which an upper bound for this high speed collision 
probability, PC

‡, have been pursued.1,2  In the collision plane representation of the high speed col-
lision probability problem, the predicted mean miss position in the collision plane is assumed 
fixed.3,4  Then the shape (ellipse aspect ratio), the size (scaling of the covariance matrix) or the 
orientation (rotation of the principal axes) of the combined position error ellipse may be varied to 
obtain a maximum PC.  However, what is the analyst to do if the position error covariance matrix 
for one of the two objects is not available? 

     When error covariance information for one of the objects is not available (usually the de-
bris§ object), the analyst has commonly defaulted to the situation in which only the relative miss 
position and velocity are known without any corresponding state error covariance information.  

                                                      
* Subject matter expert for orbital debris collision risk, ISS Trajectory Operations and Planning Group (CM47); SGT, 
Inc.; NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas 77058. 
† See the “NOTATION” section for all further notational descriptions. 
‡ Throughout this document it is to be understood that collision probability is computed assuming the position errors 
are normally distributed.  This assumption applies to each object individually as well as to the relative position error of 
one object with respect to the other. 
§ In this document the terms “asset” and “debris” will be used exclusively to represent what are also commonly referred 
to, respectively, as “primary” and “secondary”. 
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The usual methods of finding a maximum PC do little good as the analyst defaults to the assump-
tion of having no knowledge of the combined, relative position error covariance matrix. 

     It is reasonable to think that, given the assumption of no combined covariance information, 
an analyst might still attempt to determine the relative position error covariance matrix that re-
sults in an upper bound on the PC.  Without some guidance on limits to the shape, size and orien-
tation of the unknown combined covariance matrix, the limiting case is a degenerate ellipse lying 
along the relative miss vector in the collision plane.  Unless the miss position is exceptionally 
large or the at-risk object is exceptionally small, this method results in a maximum PC too large to 
be of practical use.  For example, assuming that the miss distance is equal to the current ISS alert 
volume along-track (+ or -) distance of 25 kilometers and that the at-risk area has a 70 meter radi-
us, the maximum (degenerate ellipse) PC is about 0.00136.  At 40 kilometers, the maximum PC 
would be 0.00085 which is still almost an order of magnitude larger than the ISS maneuver 
threshold of 0.0001.  In fact, a miss distance of almost 340 kilometers is necessary to reduce the 
maximum PC associated with this degenerate ellipse to the ISS maneuver threshold value.  Such a 
result may be of no practical value to an analyst.  However, it turns out that some improvement 
may be made with respect to this problem just by realizing that while the position error covari-
ance matrix of one of the objects (usually the debris object) may not be known, the position error 
covariance matrix of the other object (usually the asset) is almost always available.  Making use 
of the position error covariance information for the one object provides an improvement in find-
ing an upper bound to the PC.  This improvement, in some cases, may offer real utility.  Three 
scenarios in which this method might be useful are i) a well tracked object conjuncting with a 
poorly tracked object, ii) a commercial or foreign owner/operator object conjuncting with a pub-
licly cataloged resident space object, and iii) a cataloged object conjuncting with a launch trajec-
tory (this would include the so-called COLA Gap as well as the usual Launch COLA).5,6  In this 
last case, the launch trajectory might have position error covariance information of dubious quali-
ty as compared to that of the trajectory of the cataloged object. 

PROPOSED SOLUTION 

     The approach used to find a maximum PC when covariance data for one of the objects is 
missing is straight forward.  First, the relative position vector between the two objects and the 
position error covariance data that is available for the one object are transformed into the collision 
plane frame*.  This is done in the usual manner that the combined, relative position and error co-
variance data are transformed into that frame for the typical collision risk analysis problem.  The 
position vector transformation is defined by the following relationship: 

 relIHHCrel RTTr   (1) 

Note that the inertial miss position at TCA is first transformed into the HNV frame and then in-
to its two dimensional projection in the collision plane frame.  To transform the asset object’s 3x3 
uvw position error covariance matrix into its 2x2 collision plane frame representation, three trans-
formations are required: 

 TTTCTTTC T
HC

T
IH

T
AIAAAIIHHCAC   (2a)

                                                      
* The transformation between inertial and collision plane frames is not unique. The path shown is just one example. 
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This is the contribution of the known position error covariance matrix to the calculation of the 
PC in the collision plane frame.  A similar transformation is possible for the debris object’s posi-
tion error covariance matrix, if it was known, and is presented here for completeness. 

 TTTCTTTC T
HC

T
IH

T
DIDDDIIHHCDC   (2b)

     The critical value of the contribution of the unknown position error covariance matrix is 
that variance which makes PC a maximum.  Using simple logic, it is possible to characterize the 
form of the unknown position error covariance matrix resulting in the maximum PC.  First, in the 
collision plane frame, adding uncertainty normal to the relative miss vector tends to disperse the 
position uncertainty away from the asset.  To maximize the probability, it follows that it is neces-
sary to minimize the dispersion of the uncertainty in the collision plane frame normal to the rela-
tive miss vector.  This is accomplished by having the unknown collision plane uncertainty be rep-
resented by a degenerate ellipse.  This ellipse is oriented along the collision plane relative miss 
unit vector with its center at the relative miss position of the debris object in the collision plane.  
The general form of the debris object collision plane position error covariance matrix contribution 
to the combined error covariance matrix may then be specified as: 

 uuC T
relrelrDC V  (3)

It should be noted that this is only the collision plane component of the unknown position er-
ror covariance matrix.  The part of the unknown matrix normal to the collision plane will be dis-
cussed later.  The combined collision plane relative position error covariance matrix is now given 
by the sum of the known collision plane position error covariance matrix and the unknown colli-
sion plane position error covariance matrix.  This result is presented in Equation 4. 

 CCC DCACTC  (4)

     To determine the critical value of Vr that maximizes the probability, the collision probabil-
ity is first approximated by simply multiplying the collision risk area by the bivariate normal 
probability density at the origin of the collision plane coordinate frame*.  This is presented in 
Equation 5.   
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(5)

     To determine the critical value of Vr, referred to as VC, Equation 5 is differentiated with re-
spect to Vr.  With some simplification, it is possible to solve directly for VC, the critical value of 
Vr.  This result, in terms of the predicted collision plane miss distance and the sigma level of the 
collision plane miss with respect to the asset position uncertainty is given by: 

 









K

-K
rV 2

A

2
A2

magC

1  (6)

The sigma level of the collision plane miss vector with respect to the asset collision plane po-
sition uncertainty is specifically given by: 

                                                      
* This approximation works well as a proxy for the more formal integral computation of the collision probability.  It 
becomes less effective as the smaller of the two collision plane standard deviations nears or becomes smaller than the 
collision radius of the combined area of the two objects.  Shorter miss distances also do not perform as well. 
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 rCr rel
-1
AC

T
rel

2
AK   (7)

     Having determined VC through the use of Equations 6 and 7, Equations 3 and 4 allow for 
the computation of the total collision plane position error covariance matrix.  Using this total po-
sition error covariance the corresponding approximate maximum PC may be computed in the usu-
al manner of Pc computation or the approximation in Equation 5 instead.  If the computed maxi-
mum PC is below some risk mitigation threshold (such as a collision avoidance maneuver thresh-
old) this would indicate that the approaching debris object cannot, given the currently available 
information, present a risk high enough to justify action being taken.  Unfortunately, if the com-
puted probability is larger than the mitigation threshold value, no conclusion may be reached 
about the advisability of action being taken.  That is, this method can never show that a risk miti-
gation action is necessary only that such an action is not necessary. 

     Inspection of Equation 6 shows that if KA is less than 1 there is no acceptable solution for 
VC.  This is the case because VC would no longer be positive semi-definite.  The direct implication 
here is that if KA is less than or equal to 1, the maximum probability is obtained by ignoring the 
contribution of the debris object and using only the position uncertainty of the asset in the calcu-
lation of the collision probability.  If such a case does arise and the calculated probability, using 
only the asset error covariance matrix, is below the action threshold then this would indicate that 
risk of a collision is too low to justify a risk mitigation maneuver.  In cases where this condition 
exists but the asset-only collision probability is at, or just above the action threshold, it might be 
argued that any realistic debris state uncertainty would drive the collision risk below the threshold 
and so no action need be taken. 

     A side result to the above solution is the value of the sigma level associated with the pre-
dicted miss using the combined position uncertainty resulting in the maximum collision probabil-
ity.  This K is defined in Equation 8 with CDC being replaced using Equations 3 and 6. 

   rCCr rel
-1

DCAC
T
rel

2K   (8)

By back substitution it is determined that the right hand side of Equation 8 is equal to 1: 

 1}: { VVK Cr
2  (9a)

And so Equation 5 becomes: 

 
CTC

CC
π

AP
2

e 2
1

  (9b)

Another side result is possible by generalizing Equation 6.  For an arbitrary but positive value 
of Vr, the relationship between Vr and K from Equation 8 is given by Equation 10. 

 
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magr rV  (10)

     A general comment is in order.  The smaller the value of the known collision plane position 
error uncertainty normal to the relative miss vector, the potentially less useful this method hap-
pens to be.  In principal, if the known uncertainty were small enough to ignore then this method 
behaves effectively the same as the case in which no position uncertainty information for either 
object is available.  The power of this method in the more general case is that a certain amount of 
the position uncertainty is already spread out away from the at-risk collision area and therefore 
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this maximum collision probability is a more useful bound. Lastly, it should be kept in mind that 
the actual size, shape and orientation of the collision plan projection of the asset’s position error 
covariance matrix at TCA is highly dependent upon the close approach geometry.  Side ap-
proaches will have a dominant role played by the along track uncertainty and less by the radial 
uncertainty which could be orders of magnitude less than the along track value.  In this situation 
the technique may work well for some geometries that have relative large radial misses.  A head 
on approach would instead see almost no along track effect.  Instead, the radial and cross track 
values, being smaller and of approximately the same order of magnitude, dominate the process.  
In the head on case then, it might be anticipated that the technique is of less frequent use. 

An Example of the Basic Method 

     Now presented is a basic example of the method.  This example has the asset covariance 
matrix and miss position data already expressed in the collision plane frame.  For convenience, 
the asset collision plane position error covariance matrix is chosen to be diagonal.  This is no true 
loss of generality as it only represents a rotation into the principal axis frame of the asset collision 
plane covariance matrix. The debris object’s collision plane miss position with respect to the as-
set, the corresponding unit vector and the asset only covariance matrix are: 

  Trel 2001000r  (11a)

 
T

rel 





26
1

26
5u  (11b)

  









25000

0722500
ACC  (11c)

(Units have been omitted here.  All that is required is that the length unit be consistent across 
the position vector, the error covariance matrix and the asset/debris collision area.) 

The asset only error covariance matrix 1-sigma ellipse, centered at the collision plane miss po-
sition, defined by the matrix in 11c is shown in Figure 1. 

 

Figure 1:  Asset only position error covariance matrix as a 1- sigma ellipse 
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     Substituting the data in Equations 11a and 11c into Equation 7 yields: 

 
289

5024
K 2

A  (12)

The result of Equation 12 and the miss position data in Equation 11a may then be substituted 
into Equation 6 to give: 

 5109.8
157

153887500
V C  (13)

     Now the values in Equations 13, 11b, 11c and 3 (with Vr=VC) may be substituted into 
Equation 4 to give the critical value of the combined critical collision plane position error covari-
ance matrix (CTC) that will yield the maximum collision probability, Equation 14.  This matrix, as 
a 1-sigma ellipse representation, is shown in Figure 2. 

 















157
6311250

157
29593750

157
29593750

157
26140125

TCC  (14)

 

Figure 2:  Combined, critical position error covariance matrix as a 1-sigma ellipse 

     The approximate maximum value of the collision probability associated with this critical 
collision plane error covariance matrix may be determined by substituting the appropriate data 
into Equation 9b.  The result is shown in Equation 15a. 

 
)314(100002

eAP
-1/2

C
C


  (15a)

     If the collision risk area is defined as a circle with radius RHB then PC becomes: 

 R
20000

eR
P HB

-1/2
HB

C
6 2

2

1071.1
314

  (15b)
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Comments on Applying the Basic Method 

Investigation of the result described by Equation 6 may or may not provide a definitive answer 
to the question of whether or not a risk mitigation maneuver is required.  If it is clear from the 
result (by way of the probability calculation showing a maximum PC less than the action thresh-
old) that no risk mitigation action is necessary, then a useful final result has been obtained.  How-
ever, as already indicated, if the maximum probability associated with VC does violate an action 
threshold, it cannot be concluded that some type of risk mitigation action is absolutely necessary.  
Table 1 below illustrates, for four different values of RHB, various possible outcomes using the 
result in Equation 15b. 

    Table 1. Object size and mitigation outcome examples 

RHB PC 10-3 Threshold 10-4 Threshold 

5 0.000043 No action required No action required

10 0.000171 No action required Unknown 

20 0.000685 No action required Unknown 

25 0.001070 Unknown Unknown 

 

While using the approximate expression, the results in the table above give a good estimate of 
whether or not a collision avoidance maneuver may be avoided (“No action required”) versus the 
alternative condition (“Unknown”) which does not give any additional information on the neces-
sity of a maneuver.  The largest RHB value has a probability just slightly above the 10-3 threshold.  
This might lean the analyst toward thinking “No action required” might be acceptable.  However, 
suppose for the unknown debris collision plane covariance, an additional uncertainty normal to 
the miss vector is added.  It turns out (stated without proof) the size of the resulting collision 
plane covariance matrix for the debris object that would give a PC of 10-3 is about the same size as 
the matrix of the asset.  That would probably not be an ignorable situation.  Therefore, the stated 
condition of “Unknown” would need to stand unless some other condition existed that justified 
confidence in the maximum PC being less than the required threshold. 

Offered here, simply as a conjecture, is a path to other potential constraints which might fur-
ther limit the possible range of values of Vr and thus, perhaps, VC.  Recall that the degenerate var-
iance Vr lies only along the collision plane miss vector.  The debris object collision plane position 
error covariance therefore ignores the component normal to the collision plane miss vector in the 
collision plane.  However, this debris object degenerate position uncertainty covariance matrix 
can have a component along the relative velocity vector which is perpendicular to the collision 
plane.  There also may be some level of correlation between the debris position uncertainty along 
the relative velocity direction and the degenerate component in the collision plane along the rela-
tive miss vector.  This out-of-plane element of the debris object position error uncertainty does 
not affect the outcome of the previous maximum PC related variance derivation.  The out-of-plane 
component is therefore completely arbitrary except in as how it might be logically or practically 
bounded.  In any case, the complete representation, in the HNV frame, of the debris object’s criti-
cal position error covariance is presented in Equation 16. 
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The CDH matrix may be back-transformed into the debris object’s uvw frame, yielding a hypo-
thetical form of CDD.  The transformed matrix will display the representation of the critical colli-
sion plane position error variance, VC, as well as the arbitrary components, Cvv and Crv, in the 
debris uvw frame.  It may be that an examination of CDD will indicate some character that is not 
realistic.  For example, suppose one or more elements of CDD (assuming arbitrary but otherwise 
plausible values for Cvv and Crv) were unrealistic.  This might happen if an out-of-plane or radial 
component were unrealistically large, particularly when compared to the along track uncertainty.  
If it is possible to say, with some reasonable degree of confidence, that a specific component of 
CDD is too large by some amount then this might indicate a reasonable reduction in the size of VC 
so as to not exceed the presumed bound on the component of CDD under investigation.  Any re-
duction in VC would result in a reduction in the collision probability since the original value of VC 
is associated with a maximum collision probability.  As noted earlier, a variation on this is when 
the asset only probability is above the action threshold.  It may be that reasonable lower limits on 
the components of the unknown error covariance matrix, along with the recomputed VC, indicate 
that the true uncertainty may be large enough to prevent the PC from being above the action 
threshold. 

Additional, Possible Applications 

The application scenarios i, ii and iii noted in the last paragraph of the Introduction, along with 
the example of the basic method above, are all direct applications of the method to the standard 
close approach event.  This type event is generally characterized by state estimates for two resi-
dent space objects that result in a close approach at a specific time in the future.  Scenarios i and 
ii fall into this category.  Scenario iii may be interpreted differently in that the Launch COLA is 
based on a proposed launch time and trajectory.  This then is a screening problem in which, given 
a resident space object catalog, a proposed trajectory is screened, or cleared, against the objects it 
might pass near along the trajectory.  Scenario iii, though clearly a screening problem, is more 
akin to the usual close approach collision avoidance event.  This is the case due to the fact that the 
risk evaluations are effectively single events at some launch commit time.  That is, once the 
launch commences the vehicle is on its way and further close approach analyses are difficult at 
best until the newly launched object has a well-established orbit of its own.  This situation is also 
true for the more common on-orbit maneuver screening situation.  Both have in common that they 
involve the near term clearing of a proposed trajectory against a resident population of space ob-
jects. 

The more typical on-orbit screening problem consists of repeated and continuing close ap-
proach evaluations against the same set of objects.  These objects will be following natural ballis-
tic trajectories whose estimates are updated as both the asset and other cataloged objects have 
their orbits updated following additional tracking opportunities.  Such standard on-orbit screening 
my use either a bounding physical volume about the asset (thus requiring only knowledge of 
nominal trajectories) or the screening may involve anticipated contact between position error co-
variance matrices (i.e. “covariance” screening) at a selected sigma level when state error covari-
ance matrices exist for the asset and any object it approaches.  On-orbit screening is intended to 
not only recognize near-term close approach collision risks but also to identify those objects that 
might present a future risk after additional tracking data is included in their trajectory estimates.  
The two types of screening then are different in some fashion.  It is the case though that the 
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“missing covariance” technique may offer a similar approach for each that involves screening to a 
selected collision risk level. 

Consider Equation 9b.  This equation relates the known collision plane miss position and asset 
position covariance matrix, by way of the critical covariance for the debris object, to the maxi-
mum collision probability.  Suppose, rather than determining the value of PC, the inverse problem 
is considered.  That is, a screening risk level of collision probability is chosen and then the locus 
of points in the collision plane frame that corresponds to that PS is determined.  If during screen-
ing, a predicted miss lies outside of the locus then that close approach cannot present a collision 
risk greater than the selected PS.  However, just as with the “regular” close approach problem, if 
the miss position lies within the locus then no statement can be made as to the actual collision risk 
presented by that object. 

The equation describing the locus of points is greatly reduced when the simplified algorithm 
for the collision probability, as in Equation 5, is used.  After back substitution into Equation 9b, a 
rearrangement leads to the simplified form which is just the equation of an ellipse.  This ellipse is 
that of the known collision plane covariance matrix centered on the asset.  The size of the ellipse 
is easily computed from known values.  This result is shown in Equation 17 and is then followed 
by the screening locus equation, Equation 18.   

 2
SS

2
C

S

P

A
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24

e
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1
2



  (17)

 K SS
-1
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T
S

2rCr  (18)

It should be kept in mind that the same general guidelines as to when this “missing covari-
ance” technique is useful for the standard close approach problem will also apply to this screen-
ing application of the technique.  That is, the size of the known position covariance matrix, the 
close approach direction and the actual collision plane frame miss position all play a roll.  Certain 
combinations of these factors give useful results while others may not. 

SUMMARY 

Presented in this document is a method by which an approximate upper bound on the collision 
probability between two orbital objects may be computed under the condition that the position 
uncertainty of only one of the objects is known at the time of their closest approach.  This method 
is less arbitrary than other approaches in finding a maximum collision probability and has some, 
though not guaranteed, ability to provide a useful, unambiguous upper limit on the collision prob-
ability.  The method also gives a direct indication of when the one known position uncertainty is 
sufficient to compute a maximum probability.  Additional position uncertainty in such cases 
would only reduce the maximum collision probability.  Lastly, by transforming the critical (max-
imum probability related) unknown position error uncertainty back into the reference frame of the 
object with this unknown position uncertainty, it may be possible to put further constraints on the 
value of the critical position error uncertainty.  Any such constraint could result in a reduction in 
the critical value of the unknown position error uncertainty leading to a reduction in the value of 
the maximum collision probability, possibly below any specified action threshold.  Lastly, other 
applications of the technique for launch, maneuver and on-orbit screening are also presented. 
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NOTATION 

AC = Combined collision risk area, accounts for sizes of both asset and debris objects, (length2). 
CAA = Asset object 3x3 position error covariance matrix in the asset uvw frame, (length2). 
CAC = Asset object 2x2 position error covariance matrix partition in the collision plane frame, (length2). 
CDD = Debris object 3x3 position error covariance matrix in the debris uvw frame, (length2). 
CDH = Debris object 3x3 position error covariance matrix in the HNV frame, (length2). 
CDC = Debris object 2x2 position error covariance matrix partition in the collision plane frame, (length2). 
Crv = Debris object 2x1 matrix partition representing the position covariance of the debris object 
  between the relative velocity component and the two components in the collision plane, 
  represented in the HNV frame and with respect to the collision plane’s normal, (length2). 
CTC = Total, combined 2x2 position error covariance matrix in the collision plane frame, (length2). 
Cs = Collision plane frame 2x2 position error covariance matrix used for screening which may be from 
   either the asset or debris, (length2). 
Cvv = Position uncertainty variance of the debris object along the relative velocity direction, represented 
  in the HNV frame as along the normal to the collision plane, (length2). 
HNV = Horizontal-near vertical reference frame.  Defined by the directions of the cross product of the 
  inertial relative velocity vector and the radius vector of the asset and the cross product of the unit 
  vector of this direction with the relative velocity vector.  The first direction is a true horizontal 
  direction and the second is almost nearly vertical, (none).  
K = Mahalanobis distance or sigma level (used in this paper) of an error vector with respect to its error 
  covariance matrix that describes the level of uncertainty of the vector error, (unitless). 
KA = Value of K computed by using only the known asset object position error covariance matrix and 

  the collision plane relative miss vector, (unitless). 
KS = Value of K used for covariance based, close approach screening, (unitless). 
PC = Probability of collision or, more typically, the probability that a debris object will violate some 
  boundary surface surrounding the center of mass of the asset, (unitless). 
Ps = Value of the probability of collision used for screening (unitless). 
RHB = Hard body radius, the combined asset and debris radius defining the collision risk area, (length). 
Rrel = Debris with respect to asset-relative position vector (3 element column) at TCA, represented in the 

  inertial reference frame, (length). 
rmag = Magnitude of the collision plane representation of the relative position vector at TCA, (length). 
rrel = Debris with respect to asset relative position vector (2 element column) at TCA, represented in the 

  collision plane frame, (length). 
rs = Locus of relative position vectors (2 element column) at a TCA (represented in the 

  collision plane frame) used in covariance based screening, (length). 
TAI = Asset state uvw frame to inertial frame 3x3 transformation matrix, (unitless). 
TDI = Debris state uvw frame to inertial frame 3x3 transformation matrix, (unitless). 
THC = HNV frame to collision plane frame 3x2 partitioning matrix, (unitless). 
TIH = Inertial frame to HNV frame 3x3 transformation matrix, (unitless). 
TCA = Time of closest approach between the asset and debris objects, (time). 
uvw = Local inertial coordinate frame (u up, v forward and w along angular momentum), (none). 
urel = Unit vector (2 element column) along the collision plane relative miss vector, rrel, (unitless). 
Vr = Debris object collision plane position error variance along the collision plane relative miss vector 

  direction, (length). 
VC = Critical value of Vr resulting in an approximate maximum collision probability, (length). 
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