The NASA Electronic Parts and Packaging (NEPP) Program:
Roadmap for FY15 and Beyond

Kenneth A. LaBel Michael J. Sampson
ken.label@nasa.gov michael.j.sampson@nasa.gov
301-286-9936 301-614-6233
Co- Managers, NEPP Program
NASA/GSFC

http://nepp.nasa.gov

Acknowledgment:
This work was sponsored by:
NASA Office of Safety & Mission Assurance

Open Access

Deliverable to NASA Electronic Parts and Packaging (NEPP) Program to be published on nepp.nasa.gov originally presented by Kenneth LaBel at the NASA Electronic Parts and Packaging Program (NEPP) Electronics Technology Workshop (ETW), NASA Goddard Space Flight Center in Greenbelt, MD, June 23-26, 2015.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMOLED</td>
<td>Active Matrix Organic Light Emitting Diode</td>
</tr>
<tr>
<td>CBRAM</td>
<td>Conductive Bridging Random Access Memory</td>
</tr>
<tr>
<td>CGA</td>
<td>Column Grid Array</td>
</tr>
<tr>
<td>CIGS</td>
<td>Copper Indium Gallium Selenide</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercial Off The Shelf</td>
</tr>
<tr>
<td>DDR4</td>
<td>Double Data Rate Four</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DRAM</td>
<td>Dynamic Random Access Memory</td>
</tr>
<tr>
<td>EEE</td>
<td>Electrical, Electronic, and Electromechanical</td>
</tr>
<tr>
<td>EPC</td>
<td>Efficient Power Conversion</td>
</tr>
<tr>
<td>ESL</td>
<td>Electronic System Level</td>
</tr>
<tr>
<td>FeRAM</td>
<td>Ferroelectric RAM</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array</td>
</tr>
<tr>
<td>FY</td>
<td>Fiscal Year</td>
</tr>
<tr>
<td>GaN</td>
<td>Gallium Nitride</td>
</tr>
<tr>
<td>Gen</td>
<td>Generation</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>HALT</td>
<td>Highly Accelerated Life Test</td>
</tr>
<tr>
<td>HAST</td>
<td>Highly Accelerated Stress Testing</td>
</tr>
<tr>
<td>HEMTs</td>
<td>High-electron-mobility transistors</td>
</tr>
<tr>
<td>HP Labs</td>
<td>Hewlett-Packard Laboratories</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>IP</td>
<td>Intellectual Property</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>IR/Infineon</td>
<td>International Rectifier/Infineon Technologies</td>
</tr>
<tr>
<td>LCoS</td>
<td>Liquid-Crystal-on-Silicon</td>
</tr>
<tr>
<td>MEMS</td>
<td>Micro Electrical-Mechanical System</td>
</tr>
<tr>
<td>MOSFETS</td>
<td>Metal Oxide Semiconductor Field Effect Transistors</td>
</tr>
<tr>
<td>MRAM</td>
<td>Magnetoresistive Random Access Memory</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NAVY</td>
<td>Naval Surface Warfare Center, Crane, Indiana</td>
</tr>
<tr>
<td>NEPP</td>
<td>NASA Electronic Parts and Packaging</td>
</tr>
<tr>
<td>Occam</td>
<td>Open Conditional Content Access Management</td>
</tr>
<tr>
<td>OLED</td>
<td>Organic Light Emitting Diode</td>
</tr>
<tr>
<td>PBGA</td>
<td>Plastic Ball Grid Array</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
<tr>
<td>RERAM</td>
<td>Resistive Random Access Memory</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>SEE</td>
<td>Single Event Effect</td>
</tr>
<tr>
<td>SERDES</td>
<td>Serializer/Deserializer</td>
</tr>
<tr>
<td>SiC</td>
<td>Silicon Carbide</td>
</tr>
<tr>
<td>SOC</td>
<td>Systems on a Chip</td>
</tr>
<tr>
<td>TI</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>TRL</td>
<td>Technology Readiness Level</td>
</tr>
<tr>
<td>VNAND</td>
<td>Vertical NAND</td>
</tr>
<tr>
<td>WBG</td>
<td>Wide Band Gap</td>
</tr>
</tbody>
</table>
Technology Selection Criteria for NEPP Investigation

• The technologies should satisfy all or most of the following criteria:
 – Wide applicability,
 – Product level or in productization, and,
 – No distinction: COTS to hi-reliability aerospace.

• Partnering arrangements with other organizations preferred.

• In general, we avoid:
 – Laboratory technologies, e.g., <TRL3,
 – Limited application devices with certain exceptions (critical application or NASA center specialization).
Technology Investigation Roadmap

Discussion

• Technology assurance efforts are not explicitly included except on “Small Missions” chart.
 – Guidelines are a product of many technology evaluation tasks.

• Only major product categories shown.

• Technology areas not on Roadmap but under consideration include:
 – Electro-optics (fiber optics),
 – Advanced analog and mixed-signal devices,
 – Imaging sensors,
 – Modeling and simulation,
 – High-speed communication (SERDES, fast data switches), and,
 – Adjunct processors (eg., graphics, signal processing)

• Note 1: Advanced CMOS technologies not explicitly included:
 – NEPP leverages samples from ongoing DoD and/or commercial sources.
 – 14nm is current target.

• Note 2: “Reliability testing” may include product and/or package testing.
Gartner Hype Cycle Concept

- **Technology Trigger**
 - R&D

- **Peak of Inflated Expectations**
 - First-generation products, high price, lots of customization needed
 - Startup companies first round of venture capital funding

- **Trough of Disillusionment**
 - Early adopters investigate
 - Mass media hype begins
 - Supplier proliferation
 - Activity beyond early adopters
 - Negative press begins
 - Supplier consolidation and failures
 - Second/third rounds of venture capital funding

- **Slope of Enlightenment**
 - Second-generation products, some services
 - Third-generation products, out of the box, product suites
 - Methodologies and best practices developing

- **Plateau of Productivity**
 - High-growth adoption phase starts: 20% to 30% of the potential audience has adopted the innovation
Gartner Hype Cycle for Electronics 2013

- Deliverable to NASA Electronic Parts and Packaging (NEPP) Program to be published on nepp.nasa.gov originally presented by Kenneth LaBel at the NASA Electronic Parts and Packaging Program (NEPP) Electronics Technology Workshop (ETW), NASA Goddard Space Flight Center in Greenbelt, MD, June 23-26, 2015.
NEPP and Gartner Electronics Hype Cycle 2013

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Years to adopt:</th>
<th>Transformational</th>
<th>High</th>
<th>Moderate</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCoS</td>
<td>less than 2 years</td>
<td>Silicon Photonics</td>
<td>CIGS Thin-Film Solar Cells</td>
<td>Resistance Phase-Change Memory</td>
<td>DDR4 DRAM</td>
</tr>
<tr>
<td>Magnetometer</td>
<td>2 to 5 years</td>
<td>Software-Defined Radio for Mobile Devices</td>
<td>CMOS RF Power Amplifier</td>
<td>Through Silicon Vias</td>
<td>Electronic Paper</td>
</tr>
<tr>
<td>Network on Chip</td>
<td>5 to 10 years</td>
<td>Memristor Memory</td>
<td>ESL Design Tools and Methodologies</td>
<td>AMOLED</td>
<td>Lithium Ion Phosphate</td>
</tr>
<tr>
<td></td>
<td>more than 10 years</td>
<td>Nanotube Electronics</td>
<td>HW Reconfigurable Devices</td>
<td>Electronic Paper</td>
<td>Batteries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DNA Logic</td>
<td>IC Subsystem Reuse</td>
<td>MEMS Displays</td>
<td>MEMS Gyroscopes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molecular Transistors</td>
<td>Multicore Programming</td>
<td>Occam Process</td>
<td>Metamaterial Antennas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic/Polymer Solar Cells</td>
<td>Nanomaterial Supercapacitors</td>
<td>OLED Lighting</td>
<td>Wireless Power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quantum Computing</td>
<td>Post-193 nm Lithography</td>
<td>Photonic Crystal Displays</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resistance Polymer Memory</td>
<td>Printed Semiconductors</td>
<td>Quantum Dot Displays</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terahertz Waves</td>
<td>Reusable Analog IP</td>
<td>Silicon Thin-Film Solar Cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cognitive Radio</td>
<td>Silicon Anode Batteries</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Holographic Storage for Consumer Electronics</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After Gartner 2013 Electronics Hype Cycle

Deliverable to NASA Electronic Parts and Packaging (NEPP) Program to be published on nepp.nasa.gov originally presented by Kenneth LaBel at the NASA Electronic Parts and Packaging Program (NEPP) Electronics Technology Workshop (ETW), NASA Goddard Space Flight Center in Greenbelt, MD, June 23-26, 2015.
Field Programmable Gate Arrays (FPGAs)

Trusted FPGA
- DoD Development

Altera
- Stratix 5 (28nm TSMC process commercial)
- Max 10 (55nm NOR based commercial – small mission candidate)
- Stratix 10 (14nm Intel process commercial)

Microsemi
- RTG4 (65nm RH)

Xilinx
- 7 series (28nm commercial)
- Ultrascale (20nm commercial – planar)
- Ultrascale+ (16nm commercial - vertical)
- Virtex 5QV (65nm RH)

FY14 FY15 FY16 FY17
Xilinx Zynq UltraScale+ Multi-Processor System on a Chip (MPSoC) family

From Xilinx.com

Deliverable to NASA Electronic Parts and Packaging (NEPP) Program to be published on nepp.nasa.gov originally presented by Kenneth LaBel at the NASA Electronic Parts and Packaging Program (NEPP) Electronics Technology Workshop (ETW), NASA Goddard Space Flight Center in Greenbelt, MD, June 23-26, 2015.
Advanced Processors

Next Generation Space Processor (NGSP)
- Joint NASA-AFRL Program for RH multi-core processor
- TBD architecture/process

RH Processor
- BAE Systems RAD5510/5545
- Replacement for RAD750

Intel Broadwell Processors
- 14nm FinFET commercial
- 1st high-performance sans heatsink (lower power for performance)

Freescale P5020/5040
- Commercial 45nm network processor
- Preparation for RH processor

Note: Future considerations under discussion include automotive “self-driving” processor options.
Preliminary Radiation testing of 14nm Intel with Navy Crane
Microcontrollers and Mobile Processors (Small Missions)

TBD – other
- Atmel AT91SAM9G20, and TI Sitara AM3703,
- ARM (Snapdragon), Intel Atom mobile

TI MSP430
- Popular CubeSat microcontroller
- Several varieties

Freescale MPC56XX
- 90nm on-shore fab
- Automotive Grade
- Being used for both part and board level testing

Radiation Testing (limited)
Reliability Testing
Radiation Testing
Reliability Testing
Radiation Testing

FY14 FY15 FY16 FY17

Deliverable to NASA Electronic Parts and Packaging (NEPP) Program to be published on nepp.nasa.gov originally presented by Kenneth LaBel at the NASA Electronic Parts and Packaging Program (NEPP) Electronics Technology Workshop (ETW), NASA Goddard Space Flight Center in Greenbelt, MD, June 23-26, 2015.
Commercial Memory Technology

Other
- MRAM
- FeRAM

Resistive
- CBRAM (Adesto)
- ReRAM (Panasonic)
- ReRAM (Tezzaron)
- TBD (HP Labs, others)

DDR 3/4
- Intelligent Memory (robust cell twinning)
- Micron 16nm DDR3
- TBD – other commercial

FLASH
- Samsung VNAND (gen 1 and 2)
- Micron 16nm planar
- Micron Hybrid memory Cube
- TBD - other commercial

TBD – (track status)
Small Missions

EEE Parts Guidelines
- Small missions (Class D, CubeSat – 2 documents)
- System on a chip (SOC) single event effects (SEE) guideline

Guideline development

Commodities evaluation
- See commodities roadmaps for processors, power
- CubeSat Star Tracker

Radiation Testing
Reliability Testing

Automotive grade electronics
- Multiple classes of electronics (passives, actives, ICs)
- Testing by NASA and Navy Crane

Reliability Testing

Alternate test – board level
- Freescale MPC56XX
- Automotive Grade
- Both part and board level reliability testing

Reliability Testing

FY14 FY15 FY16 FY17
Automotive Processors and Systems for Self-Driving Cars?

From Freescale.com

Deliverable to NASA Electronic Parts and Packaging (NEPP) Program to be published on nepp.nasa.gov originally presented by Kenneth LaBel at the NASA Electronic Parts and Packaging Program (NEPP) Electronics Technology Workshop (ETW), NASA Goddard Space Flight Center in Greenbelt, MD, June 23-26, 2015.
Wide Band Gap (WBG) Technology

GaN Class V development
- Microsemi with EPC

GaN Enhancement Mode HEMTs
- EPC Gen 2-3, 200 V - 600 V
- GaN Systems 100 V, 650 V
- Panasonic 600 V (target)
- IR/Infineon 600 V (target)

SiC MOSFETs
- Cree Gen 1-2 1200 V - 1700 V
 Gen 3- narrower neck
- STMicro baseline SEE test
- Rohm Trench design

SiC Diodes
- Manufacturer X SEE baseline and hardening efforts

SiC ICs
- Ozark IC
- Manufacturer X

FY14 FY15 FY16 FY17

TBD – (track status)
Radiation and Reliability Testing
Radiation Testing Reliability Testing
Radiation Testing
TBD – (track status)
Radiation Testing
Radiation Testing
Radiation Testing
Radiation Testing

Deliverable to NASA Electronic Parts and Packaging (NEPP) Program to be published on nepp.nasa.gov originally presented by Kenneth LaBel at the NASA Electronic Parts and Packaging Program (NEPP) Electronics Technology Workshop (ETW), NASA Goddard Space Flight Center in Greenbelt, MD, June 23-26, 2015.
Silicon Power Devices

MOSFETs – Rad Hardened
- Microsemi i2MOS
- Infineon superjunction 100 V, 600 V (target)
- IR/Infineon R8 trench 20 V

Schottky Diodes
- Multiple vendors, reverse voltage ratings, and forward current ratings

Radiation Testing (track status)

FY14 FY15 FY16 FY17
Packaging Technologies (1 of 2)

High Density, Non-hermetic Column Grid Array (CGA)
- Xilinx CN/Kyocera Daisy Chain
- Microsemi Daisy Chain
- Materials analysis, long term stress, root cause failure

HALT Methodology/Qualification
- HALT/HAST comparison
- Plastic BGA matrix

Area Array Column
- Selection guide

Thermal Interface Materials
- Selection guide

PBGA Thermal Cycle Evaluation

Reliability Testing

Guideline development

Reliability Testing

Guideline development

Reliability Testing

Reliability Testing

FY14 FY15 FY16 FY17
Bump Reliability
- Technology review
- Test vehicle options

3D Packaging Technologies
- Technology review
- Test vehicle options

QFN package reliability
- Reliability/Qualification metrics

Guideline research

Reliability Testing

FY14 FY15 FY16 FY17
And Just When You Think
Your Roadmap is Set,
New Parts are Released

• Examples
 – More complex processors
 • TI Multicore DSP+ARM KeyStone II System-on-Chip (SoC)
 – Integrated “instruments”
 • TI DLP2010NIR – near IR sensing and controller
Summary and Comments

• NEPP Roadmaps are constantly evolving as technology and products become available.
 – Like all technology roadmaps, NEPP’s is limited to funding and resource availability.
 – Not shown are TBD passives and connector roadmaps under development.
 – NEPP is working to develop preliminary plans on interfacing to the NASA Reliability and Maintainability Program and its work on Model Based System Engineering (MBSE) approaches.

• We look forward to further opportunities to partner.

https://nepp.nasa.gov