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ABSTRACT6

In land data assimilation, bias in the observation-minus-forecast (O-F) residuals is typically7

removed from the observations prior to assimilation by rescaling the observations to have8

the same long-term mean (and higher-order moments) as the corresponding model fore-9

casts. Such observation rescaling approaches require a long record of observed and forecast10

estimates, and an assumption that the O-F mean differences are stationary. A two-stage11

observation bias and state estimation filter is presented, as an alternative to observation12

rescaling that does not require a long data record or assume stationary O-F mean differ-13

ences. The two-stage filter removes dynamic (nonstationary) estimates of the seasonal scale14

O-F mean difference from the assimilated observations, allowing the assimilation to correct15

the model for synoptic-scale errors without adverse effects from observation biases. The16

two-stage filter is demonstrated by assimilating geostationary skin temperature (Tskin ) ob-17

servations into the Catchment land surface model. Global maps of the O-F mean differences18

are presented, and the two-stage filter is evaluated for one year over the Americas. The two-19

stage filter effectively removed the Tskin O-F mean differences, for example the GOES-West20

O-F mean difference at 21:00 UTC was reduced from 5.1 K for a bias-blind assimilation to 0.321

K. Compared to independent in situ and remotely sensed Tskin observations, the two-stage22

assimilation reduced the unbiased Root Mean Square Difference (ubRMSD) of the modeled23

Tskin by 10% of the open-loop values.24

1



1. Introduction25

Within the context of data assimilation, ‘bias’ refers to errors in modeled or observed26

variables that persist over time and/or space. Standard ‘bias-blind’ data assimilation meth-27

ods are based on the assumption that neither the forecast model nor the observations are28

biased, and these methods will produce suboptimal output in the presence of bias (Dee and29

Da Silva 1998). Unfortunately, the forecast models and observation data sets used in Earth30

system applications, including for the land surface, typically are biased (Dee and Todling31

2000; Reichle et al. 2004). Observation biases can arise from errors in the observing in-32

strument and its calibration, the observation operator, or the retrieval model, as well as33

representativity errors between the observed state variables and their modeled counterparts.34

Likewise, forecast biases can arise from errors in the forecast model structure, parameters,35

initial conditions, and forcing.36

Ideally, the cause of observation and forecast biases should be diagnosed and treated at37

the source. Where this is not possible, these biases can also be addressed in data assimilation38

by applying an observation bias correction prior to assimilation (e.g., Harris and Kelly, 2001)39

or by using a ‘bias-aware’ assimilation system explicitly designed to correct either observation40

biases (e.g., Auligné et al. 2007; Fertig et al. 2009 ) or forecast biases (e.g., Dee and Todling41

2000; Keppenne et al. 2005). Bias correction methods require that the bias be observable42

(Dee and Da Silva 1998), and the ocean and atmosphere examples cited above measure the43

biases against confident estimates of the true mean state, typically obtained with reference to44

point-based observations (e.g., ocean buoys, radiosondes). However, the land surface is much45

more heterogeneous than the ocean and atmosphere, and point-based in situ observations46

are in general not representative of the coarse resolution states estimated by remote sensors47

and land surface models (Crow et al. 2012). Consequently, for large domains the true mean48

land surface states are unknown, since there are large systematic differences between the49

mean (and variance) of different observed and modeled land surface data sets, none of which50

can in general be identified as having statistics representative of the true state (Reichle et al.51
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2004).52

Since observation and forecast biases cannot be observed for land surface states, it is53

standard practice to remove the systematic differences between the observed and forecast54

estimates from land data assimilation, usually by rescaling the observations to be consis-55

tent with the long-term mean (and variance, and sometimes higher order moments) of the56

forecasts (e.g., Reichle and Koster 2004; Drusch et al. 2005; Scipal et al. 2008; Crow et al.57

2011). This prevents the systematic differences from adversely impacting the model state,58

while satisfying the minimum criterion for optimal bias-blind data assimilation that there be59

no difference between the mean values of the observed and forecast estimates. The assimi-60

lation can then correct the model for random errors developing during each forecast, where61

‘random errors’ are errors persisting over time scales much shorter than the assumed bias62

time scale. Data assimilation with observation rescaling has been shown to yield land surface63

estimates that are superior to modeled or observed estimates alone (Slater and Clark 2006;64

Reichle et al. 2007; Ghent et al. 2010; Crow et al. 2011; Draper et al. 2012; De Lannoy et al.65

2012; de Rosnay et al. 2013). This rescaling approach is often referred to as ‘observation66

bias correction’, although strictly speaking, it is not the observation bias (defined against67

the true mean state) that is corrected, but the lumped observation-bias-minus-forecast-bias.68

The long data record of observed and forecast state estimates required for estimating69

observation rescaling coefficients has slowed the implementation of land data assimilation70

in large-scale applications, particularly within atmospheric systems, which are frequently71

updated and yet prohibitively expensive to replay over long periods. Consequently, Dharssi72

et al. (2011) and de Rosnay et al. (2013) identify the difficulty in obtaining observation73

rescaling coefficients as one cause of the limited impact of assimilating remotely sensed soil74

moisture observations into atmospheric models. The long data record requirement also pre-75

vents the assimilation of new remotely sensed data sets, and necessitates costly reprocessing76

of the rescaling parameters after significant updates to assimilated data sets.77

Consequently, this manuscript presents a method for removing the O-F mean difference78
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(i.e., the lumped observation-bias-minus-forecast-bias) in land data assimilation systems79

without access to a long data record, by using a two-stage observation bias and state update80

estimation filter. ‘Bias’ is defined subjectively, in terms of the temporal and spatial scales81

over which it applies. In seeking a bias correction method that does not require a long data82

record, the bias is necessarily defined over shorter time scales, and the presented two-stage83

filter dynamically estimates nonstationary O-F mean differences that evolve at seasonal time84

scales.85

There are typically large systematic differences between remotely sensed and modeled86

Tskin (Ghent et al. 2010; Wang et al. 2014), and if not adequately addressed these differences87

will result in a sub-optimal assimilation, potentially leading to degraded flux forecasts (e.g.,88

Reichle et al. 2010). Hence, the two-stage observation bias and state estimation scheme has89

been demonstrated here by assimilating geostationary Tskin observations into the Catchment90

land surface model.91

The remainder of this manuscript is outlined as follows. In Section 2, the two-stage92

observation bias and state estimation scheme is developed, and contrasted to observation93

rescaling approaches. The two-stage filter is then demonstrated with an example assimilation94

of remotely sensed skin temperature (Tskin) observations into a land surface model. The Tskin95

assimilation experiments are outlined in Section 3, before the results are presented in Section96

4. Finally, Section 5 presents a summary and conclusions.97

2. The state and bias filter equations98

The two-stage observation bias and state estimation approach introduced here is based99

on the on-line two-stage forecast bias and state estimation approach of Dee and Da Silva100

(1998), which has been successfully implemented in atmosphere (Dee and Todling 2000),101

ocean (Chepurin et al. 2005; Keppenne et al. 2005), and land (Bosilovich et al. 2007; De Lan-102

noy et al. 2007; Reichle et al. 2010) data assimilation. Following Friedland (1969), Dee and103

4



Da Silva (1998) decouple the forecast bias estimation from the state update, and use a sep-104

arate Kalman filter to estimate the forecast bias. The (bias-blind) state update innovations105

(i.e., the O-F residuals) are used to measure the forecast bias for the bias update, based on106

the assumption that the observations are unbiased, and persistence is used to predict the107

forecast bias. Pauwels et al. (2013) recently extended the theory of the two-stage forecast bias108

and state estimation filter to also estimate the observation bias. In their approach, demon-109

strated with synthetic experiments, the (bias-blind) state update innovation measures the110

observation bias plus the forecast bias, and is partitioned into the two separate bias terms111

by calibration. However, observations of the true mean state are ultimately required to112

partition the sum of the biases.113

In contrast, we derive the two stage filter as if to estimate the observation biases measured114

using the (bias-blind) state update innovations, based on the assumption that the forecasts115

are unbiased. However, in the intended land data assimilation applications, it is recognized116

that the forecasts are almost certainly biased, so that the estimated ‘observation bias’ really117

represents the O-F mean difference (the lumped observation-bias-minus-forecast-bias), to118

be used to adjust the observations to have the same mean value as the forecast estimates,119

consistent with observation rescaling approaches.120

Below, the bias-free EnKF equations are reviewed (Section 2a), before the optimal so-121

lution for the two-stage observation bias and state estimation filter is derived (Section 2b).122

Then, a parameterization of the Kalman gain for the bias update is introduced, to avoid123

specifying the unknown prior observation bias uncertainty (Section 2c).124

a. The bias-free EnKF125

The bias-free EnKF, as implemented by Reichle et al. (2013) for land data assimilation,126

consists of a model forecast step and a state update step. For the ith ensemble member, the127

state forecast and update at the kth assimilation time are:128
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129

x−

k,i = f(x+

k−1,i, qk,i) (1)

x+

k,i = x−

k,i + Kk(y
o
k,i + Hkx

−

k,i) (2)

yo
k,i = yo

k + vk,i (3)

where x is the model state vector, f(.) is the forecast model, q represents the model error (or130

perturbation vector), K is the Kalman gain matrix, yo is the observation vector, H is the131

observation operator, and v is an applied (zero mean, normal) perturbation representative of132

the expected observation errors. For simplicity we assume H to be linear, however the theory133

is unchanged if this assumption is relaxed. Throughout this manuscript, a super-scripted134

state vector indicates an estimated value, with the − and + superscripts indicating the prior135

and posterior estimates, respectively. In contrast, the absence of a superscript for a state136

variable indicates the true state vector.137

In a bias-free EnKF, the errors in x− and yo are assumed to have vanishing long-term138

mean errors, and to be uncorrelated with each other. Under these assumptions, x+ provides139

an unbiased estimate of x, and the optimal (minimum posterior state error variance) Kalman140

gain for the kth state update, Kk, is given by:141

142

Kk = P x−
k HT

k (Ro + HkP
x−
k HT

k )−1 (4)

where P x− is the prior model state error covariance matrix, and Ro is the observation error143

covariance matrix. P x− is diagnosed from the ensemble spread, while for land data assimi-144

lation Ro is typically assumed to be constant in time and have zero off-diagonal terms (e.g.,145

Draper et al. 2012). Applying the above equations in the presence of (unknown) observation146

and/or forecast biases is sub-optimal, and is referred to as ‘bias-blind’ data assimilation (Dee147

and Da Silva 1998).148
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b. The two-stage observation bias and state estimation149

For an observation-bias-aware assimilation, the observation vector is allowed to have a150

nonzero mean error persisting over some extended time period (a bias). The biased obser-151

vations, written ỹo
k, can be partitioned into the bias term, bk, and the remaining zero-mean152

error component, yo
k:153

154

ỹo
k = bk + yo

k (5)

The observations are then bias-corrected within the state update (equation 2) to remove155

the bias from the innovations, giving an unbiased estimate of x+:156

157

x+

k,i = x−

k,i + K̃k(ỹ
o
k,i − bk − Hkx

−

k,i) (6)

where K̃ is the Kalman gain for the state update based on the bias corrected observation158

vector.159

A separate, discrete Kalman filter is then used to estimate the observation bias. The160

observation bias is measured using the mean O-F (< ỹo
k,i − Hkx

−

k,i >, where < . > is the161

ensemble mean). The bias is initialized at zero, and persistence is used as the bias prediction162

model, since the bias is assumed not to change significantly during individual assimilation163

cycles. The persistence model is recognized as an approximation, since a (potentially desir-164

able) feature of the two-stage filter is the nonstationary nature of the bias estimates. The165

observation bias forecast and update equations for the kth assimilation time are then written:166

167

b−k = b+

k−1
(7)

b+

k = b−k + Lk < ỹo
k,i − b−k − Hkx

−

k,i > (8)

where Lk is the Kalman gain for the bias update. Equations 7 and 8 provide an unbiased168

estimate of the observation bias, regardless of the selection of Lk. Appendix A shows that if169
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the errors in the observations, the prior bias estimate, and the prior state estimate are not170

correlated with each other, and if b−k provides an unbiased estimate of the observation bias,171

the optimal (minimum error covariance) posterior bias estimate is obtained with Lk equal172

to:173

174

Lk = P b−
k (Ro + P b−

k + HkP
x−
k HT

k )−1 (9)

Here Ro is unchanged from equation 4 and represents the random errors in the observations175

only, while P b−
k is the random error covariance matrix for the prior observation bias estimate.176

Substituting the best estimate of the bias (b+

k ; equation 8) into equation 6 then gives the177

state update equation with observation bias correction:178

179

x+

k,i = x−

k,i + K̃k(ỹ
o
k,i − b+

k − Hkx
−

k,i) (10)

Up to this point, the presented derivation of the two-stage observation bias and state180

estimation equations has followed that of Pauwels et al. (2013), with their forecast bias set181

to zero. However, we now diverge from their approach. In Appendix B, we show that if the182

optimal expression for L is used (equation 9), K̃k in equation 10 is the same as Kk for the183

bias-free filter (equation 4). That is, the Kalman gain is unchanged by the inclusion of the184

two-stage observation bias estimate in the state update equation. This result parallels that185

of Dee and Todling (2000), who show that for the on-line two-stage forecast bias and state186

estimation filter the state update Kalman gain is unchanged by the inclusion of the forecast187

bias estimate in the state update equation.188

To summarize the two-stage observation bias and state estimation filter equations pre-189

sented above, equations 1 and 10 are used for the state forecast and update, respectively,190

together with the state update Kalman gain of equation 4. Equations 7 and 8 are used191

for the observation bias forecast and update, respectively, together with the bias update192

Kalman gain of equation 9 (although equation 9 will be replaced by an empirical function in193
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Section c). For illustrative purposes, substituting equation 8 into equation 10, then taking194

the ensemble average gives:195

196

x+

k,i = x−

k,i + K̃k(ỹ
o
k,i − b−k − Hkx

−

k,i) − K̃kLk < ỹo
k,i − b−k − Hkx

−

k,i > (11)

and:197

198

< x+

k,i >=< x−

k,i > +K̃k(I − Lk) < ỹo
k,i − b−k − Hkx

−

k,i > (12)

Comparing equation 12 to equation 8 for the bias update demonstrates how the two-stage199

filter partitions the innovations (ỹo
k,i − b−k − Hkx

−

k,i) into updates to the bias estimate and200

state estimate.201

The presented two-stage observation bias and state estimation filter parallels the on-line202

two-stage forecast bias and state estimation of Dee and Da Silva (1998) but differs from the203

original two-stage estimation approach of Friedland (1969) in that the state update equation204

is optimized with the bias correction terms included (i.e., the Kalman gain is obtained by205

optimizing equation 10, rather than equation 2). The resulting two-stage filter is optimal if206

the various assumptions stated above hold. However, in practice the filter is unlikely to be207

optimal, since, for example, the prior state errors and the prior observation bias errors have208

been assumed uncorrelated, yet both contain information (and errors) from past observations.209

c. Parametrization of the bias gain210

The two-stage observation bias correction and state estimation approach outlined above211

requires the specification of the unknown error covariance matrix P b− for the prior bias212

estimate to calculate the observation bias update Kalman gain, L, in equation 9. Dee213

and Da Silva (1998) and Pauwels et al. (2013) assumed that the prior forecast bias error214

covariances were proportional to the prior forecast error covariances, and Pauwels et al.215
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(2013) assumed that the prior observation bias error covariances were proportional to the216

forecast observation error covariances. We instead replace L with an empirical function.217

This approach is made possible because P b− is not required for the bias-aware state update218

Kalman gain, due to the equivalence of the bias-free and bias-aware Kalman gains noted in219

Section b.220

For the assimilation of a single observation type at a single location, Lk becomes scalar.221

For the assimilation of the jth location and observation type, we approximate Lj,k with a222

function designed to approach one as the time since the last assimilated observation increases:223

224

λj,k = 1 − e−∆tj,k/τj (13)

where ∆tj,k is the number of time steps since the most recent observation of type j was225

assimilated, and τj is a user-defined parameter representing the e-folding time scale of the226

bias memory for observation type j. This function was chosen since it approximates the227

expected behavior Lj,k under two important scenarios. In the first scenario, no observations228

have been recently assimilated, relative to the assumed time scale of the bias, and there is229

little information with which to predict b−j,k. Hence, Lj,k is expected to be close to one, as230

predicted by equation 13 for large ∆j,k/τj . In the second scenario, observations are being231

assimilated with some regularity, and random errors in b−j,k will be dominated by random232

errors in the (ỹo
k − Hkx

−

k ) sequence used to update b−j,k (since by definition the persistence233

model will not introduce significant errors into the bias estimate), however, the bias filter234

will gradually filter these errors over time. Hence, if ∆tj,k is assumed to generalize the recent235

availability of observations, equation 13 will approximate the increased certainty in b−j,k (and236

subsequent reduction in λj,k) as more observations are assimilated.237

The empirical λj,k must adequately account for the first scenario described above, of no238

recent observations, since from equation 12 a large Lk is necessary in this case to prevent239

the potentially large b−j,k errors from being propagated into the model state vector. This240

situation can occur reasonably regularly, since there are often seasonal-scale gaps in land241
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surface observation records, when atmospheric and/or land surface conditions prevent remote242

sensing of the land surface. Note the contrast to forecast bias correction, for which one can243

fall back on a conservative approach of underestimating the forecast bias (Dee and Todling244

2000; Reichle et al. 2010) when the bias estimate is highly uncertain, since the model state245

will still be updated towards the true state (defined by the observations in this case).246

For the assimilation of multiple observation types and locations, λj,k can be extended247

in the obvious way to a matrix, Λk, by setting the jth diagonal element of Λk to λj,k,248

and setting the off-diagonal terms to zero (i.e, disregarding potential spatial correlation, or249

cross-correlation between observation types, in the bias updates). A potential weakness of250

the above parameterization of λj,k is that a b−j,k estimate based on a single recent observation251

would be assigned high confidence. Consequently, observations are excluded from the state252

update when the bias estimate is based on less than two observations within the last τj/2253

time steps (although these observations are still used to update b−j,k).254

d. Comparison to observation rescaling255

The two-stage observation bias and state estimation method presented above treats the256

systematic differences between observations and forecasts quite differently compared to the257

observation rescaling methods currently used in many land data assimilation systems. Ob-258

servation rescaling (Reichle and Koster 2004; Drusch et al. 2005; Scipal et al. 2008; Crow259

et al. 2011) is designed to remove the long-term systematic differences in the mean and260

variance (and possibly higher order moments) of the observed and forecast state estimates,261

where ‘long-term’ is defined by the length of the data record used to calculate the rescal-262

ing parameters. These systematic differences are typically assumed to be stationary, and a263

static set of bias correction parameters is used. Consequently, a (bias-free) data assimilation264

with observation rescaling will then adjust the model states to reduce residual differences265

between the observations and model forecasts. Such differences include those occurring at266

sub-seasonal time-scales, differences in the phase of the seasonal cycle, and also differences in267
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the intra-annual seasonal cycle, if the data record used to estimate the rescaling coefficients268

was sufficiently long to sample the climatological inter-annual variability.269

In contrast, the two-stage observation bias and state estimation method presented here270

is designed to remove only the systematic difference in the mean of the observed and fore-271

cast state estimates, and this mean difference is not restricted to being stationary. The272

filter dynamically estimates the O-F mean differences based only on measurements up to the273

current assimilation cycle, with greater weight placed on more recent measurements. The274

resulting estimates are then nonstationary, and will evolve at a time scale determined by275

the τ parameter in equation 13. Specifying τ to represent seasonal time scales will result in276

the observations being adjusted to match the seasonal cycle of the forecast estimates. The277

assimilation will then adjust the model state vector to reduce differences between the obser-278

vations and forecasts at sub-seasonal time scales, somewhat consistent with the observation279

rescaling approach. Although systematic differences in the variance of the observations and280

forecasts are not explicitly removed, as they are in observation rescaling, the component of281

variance due to seasonal, or longer, time scale dynamics will be addressed.282

For a given data assimilation experiment, the suitability of the two-stage filter depends283

on the distribution of the systematic differences between the observed and forecast esti-284

mates. For Tskin, there can be large differences between the mean values of different model285

forecast and observed estimates (Wang et al. 2014), however Tskin variability is reasonably286

well constrained, due in part to the tight coupling between Tskin and the (comparatively well287

observed) low-level atmospheric temperature. Hence, using the two-stage observation bias288

and state estimation to adjust the seasonal cycle of the mean observed Tskin to match that289

of the forecast estimates is expected to effectively address the systematic differences between290

observed and forecast Tskin in an assimilation. However, for many other land surface vari-291

ables this approach may not be sufficient. Most notably, for near-surface soil moisture there292

are large systematic differences between the variability of different data sets, including the293

sub-seasonal-scale variability (e.g., see Draper et al. (2013), their Figure 2). This is due in294
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part to the absence of global data sets constraining the possible soil moisture range, and295

the subsequent uncertainty in the parameters controlling the soil moisture response to at-296

mospheric forcing (specifically controlling the total volume of pore space available for water297

storage in the soil column).298

3. Skin temperature assimilation299

The two-stage observation bias and state estimation scheme has been demonstrated by300

assimilating geostationary Tskin observations into the Catchment land surface model. Two301

separate assimilation experiments were performed. First, the Tskin data were assimilated302

over the Americas at 0.3125◦x0.25◦ longitude by latitude resolution, from 1 June, 2012 to303

31 May, 2013. Second, to obtain example global maps of the mean differences between the304

observed and forecast Tskin, the Tskin data were assimilated globally, at a coarser resolution305

of 0.625◦x0.50◦, from 1 May, to 1 August, 2012.306

a. Catchment land surface model307

Catchment (Koster et al. 2000) is the land surface modeling component of the Goddard308

Earth Observing System Model, version 5 (GEOS-5; Rienecker et al. 2008). The catchment309

model equivalent variable to remotely sensed Tskin is the surface temperature (Tsurf), defined310

as the average temperature of the canopy and soil surface, and representative of an arbitrarily311

thin layer separating the canopy and soil surface from the atmosphere. While the Catchment312

Tsurf is prognostic, it has a very short memory over most land surface types due to its very313

low surface specific heat capacity (200 JK−1m−2, except for broadleaf evergreen vegetation).314

The assimilation experiments were performed off-line (i.e., decoupled from the atmospheric315

model), using meteorological forcing data from the NASA Modern-Era Retrospective analysis316

for Research and Applications (MERRA) (Rienecker et al. 2011) and Catchment model317

parameters from the routine GEOS-5 system. The initial land surface state was spun-up318
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from an archived GEOS-5 restart file on 1 January, 2000, by integrating the model forward319

(without perturbations) to 1 January 2012, and the model ensemble was then spun up from320

1 January, 2012 to the start of the assimilation on 1 June, 2012.321

b. Geostationary skin temperature data322

The assimilated Tskin observations are retrieved from geostationary Thermal Infrared323

(TIR) brightness temperature observations at the NASA Langley Research Center (Scarino324

et al. 2013). The Tskin data are retrieved every three hours, and reported on the 0.3125◦x0.25◦325

GEOS-5 model grid. The geostationary data have been produced in near-real time since326

2011, from a constellation of satellites providing global (53◦ S to 53◦ N, after quality con-327

trol) coverage: Geostationary Operational Environmental Satellites (GOES)-East, GOES-328

West, the second Multifunctional Transport Satellite (MTSAT-2), Feng Yun-2E (FY-2E),329

and Meteosat-9 (Met-9). However, for the assimilation experiment over the Americas do-330

main, an updated data set from the GOES-East and GOES-West satellites, produced with331

the latest retrieval model, has been used. Where observations are available from more than332

one geostationary satellite, only the observations from the closest satellite were assimilated.333

The observation quality control discards observations with a viewing zenith angle greater334

than 60◦, a solar zenith angle between 83◦ and 90◦, a grid-cell cloud fraction above 20%, or335

if the land modeling system indicates precipitation or a snow-covered surface.336

Figure 1 shows the coverage of the observation-quality controlled (GOES-West and337

GOES-East) Tskin observations assimilated in the Americas experiment, as a fraction of338

the total number of possible observation times (eight 3-hourly observation times per day).339

There are few observations available during colder periods, due mostly to increased cloudi-340

ness. Hence, the coverage is very low (< 15% of the maximum possible coverage) at higher341

latitudes. The coverage is also low over the Amazon, again due to cloudiness. There is some342

diurnal variation in the coverage, with slightly more observations available during the day-343

time hours (10% more than nighttime). In Section 4 evaluation statistics are only reported344
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at locations where observations were assimilated for at least 7.5% of the possible observation345

times at each time of day (∼ 30 observations).346

c. Assimilation system347

The state update component of the two-stage filter uses the EnKF (Reichle et al. 2013),348

with 12 ensemble members and 3-hourly assimilation of the Tskin observations. The assimi-349

lation update vector consists of Tsurf and the ground heat content (GHT1) associated with350

the near-surface (0-10 cm) soil temperature. The ensemble was generated using the forcing351

and model state perturbations in Table 1, which were adapted from Reichle et al. (2010)352

to account for the inclusion of GHT1 in the state update vector. Note that the Catchment353

model version used in Reichle et al. (2010) had a much higher specific heat capacity for Tsurf354

(70,000 JK−1m−2) than is currently used, and Tsurf represented a 5 cm layer depth (hence355

Reichle et al. (2010) updated only Tsurf). The observation error standard deviations for the356

Tskin retrievals were set at 1.3 K and 2.1 K during the nighttime and daytime, respectively,357

which implies that the model and observations have roughly similar skill.358

The Catchment model divides each model grid cell into multiple computational elements,359

and a 3-D filter (with non-zero horizontal model and observation error correlations, Reichle360

and Koster 2003) was used to spread the observations to all model computational surface361

elements within each grid cell. For both the observation errors and the (forcing and state362

vector) ensemble perturbations in Table 1, relatively short horizontal error correlation scales363

with an e-folding distance of 0.17◦ were applied. Note that preliminary experiments with364

increased horizontal error correlation scales (between 0.5◦ and 1.0◦) degraded the assimila-365

tion results, likely because the strong dependence on cloud cover limits the horizontal error366

correlations of estimated Tskin.367

The observation bias update was performed independently at each model grid cell (i.e.,368

using a 1-D filter). Since there is a strong diurnal cycle in the observations-minus-forecast369

mean difference (as will be shown in Section 4), the observation bias was modeled separately370
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at each of the eight diurnal observation times, following Reichle et al. (2010).371

d. Evaluation of assimilation output372

The results of the assimilation experiment over the Americas have been evaluated by373

comparison to independent observations of clear sky Tskin, from the in situ SURFRAD net-374

work (Augustine et al. 2005), and from remotely sensed MODIS TIR observations. The six375

SURFRAD sites shown in Figure 1 were used (Fort Peck was excluded since the geostation-376

ary satellite viewing zenith angle exceeds 60◦ there). For each of the validation sites, 3-hourly377

Tskin were calculated from the SURFRAD up-welling and down-welling TIR radiation ob-378

servations using the Stefan-Boltzmann equation, and broad-band emissivity calculated from379

MODIS Terra monthly narrow-band emissivity observations (MOD11C3), using Wang et al.380

(2005). For MODIS, Aqua (MYD11C1) and Terra (MOD11C1) daily clear-sky Tskin data381

on the 0.05◦ Climate Modeling Grid have been averaged up to the GEOS-5 model grid,382

and assumed to occur at the geostationary observation time closest to the median MODIS383

observation time over the domain for each satellite orbit direction.384

The skill of the Tskin assimilation experiment in predicting each of the independent data385

sets has been compared to the skill of an open-loop (no data assimilation) ensemble, gener-386

ated with the same model perturbations as used for the assimilation experiment. For both387

cases, instantaneous model Tsurf is compared to the independent Tskin observations at times388

for which geostationary Tskin observations are available (i.e., for the assimilation experiment389

the posterior Tsurf is evaluated). There are systematic differences between the mean values390

of the Tskin data sets used here, and these differences cannot be attributed to biases in any391

particular data set. Hence, the evaluation statistic is the unbiased Root Mean Square Dif-392

ference (ubRMSD), calculated at each model grid cell after removing the mean difference393

over the full time period (separately at each time of day) between the data sets.394
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4. Results395

a. O-F mean differences396

Without bias correction there is a strong diurnal cycle in the mean difference between the397

observed and forecast Tskin. For example, Figure 2 shows the diurnal cycle in the spatial mean398

O-F mean difference over the Americas for a bias-blind assimilation of the GOES-East and399

GOES-West geostationary Tskin observations (using the same observation error covariances400

and forecast ensemble perturbations as for the bias-aware assimilation experiments). For401

both GOES-East and GOES-West, the O-F mean differences are more positive after solar402

noon. The GOES-West O-F mean differences are consistently positive, and larger than403

those for GOES-East throughout the diurnal cycle, with a maximum value of 5.1 K at 21:00404

UTC, compared to values < 2 K during the nighttime. In contrast, the GOES-East O-F405

mean differences are negative during the nighttime, and positive during the daytime, but406

with magnitude consistently < 1 K in both cases, except for the 2.8 K maximum at 18:00407

UTC. The Tskin data retrieved from the different geostationary satellite are reasonably well408

calibrated (Minnis et al. 2002), and the differences between the GOES-East and GOES-West409

O-F mean differences in Figure 2 are almost certainly not related to the sensors themselves,410

but to the contrasting land covers observed by each. The small spatial mean O-F mean411

differences for GOES-East are due to cancellation between regions of positive and negative412

O-F mean differences in the spatial means.413

While the effectiveness of the observation bias correction has been analyzed throughout414

the diurnal cycle, for brevity the focus here is on the results at 21:00 UTC, when the largest415

O-F mean differences occurred in Figure 2. To demonstrate the influence of τ (the time scale416

of the bias estimate) on the O-F mean differences estimated by the filter (i.e., the b+), Figure417

3 compares the b+ time series at 21:00 UTC, estimated using τ values between 10 and 30 days,418

at the three SURFRAD locations with the greatest observation coverage. The SURFRAD419

locations are used only for convenience, and no SURFRAD data were used in these plots.420
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For comparison, each panel also includes a smoothed O-F time series, estimated using the421

first two annual Fourier harmonics, following Vinnikov et al. (2008). Recall from Section 2d,422

that selecting τ to represent seasonal time scales will allow the assimilation to correct for423

sub-seasonal-scale (e.g., synoptic-scale) errors. The bias filter tracks the expected seasonal-424

scale O-F mean differences, while filtering out the higher-frequency noise in the observed and425

forecast Tskin. As expected, the filtered b+ time series lag the smoothed time series, with the426

lag increasing as τ increases in Figure 3. The minimum time scale of the features resolved by427

the b+ time series also increases as τ increases, and for shorter τ values there is more noise428

around the seasonal cycle (particularly for 10 days). The greatest differences between the b+
429

time series with different τ (and between the filtered and smoothed time series) occurred at430

Sioux Falls, where the O-F seasonal cycle had the steepest temporal gradient. In particular,431

during the 2012 summer when the O-F decreased rapidly, the b+ time series are much higher432

than the smoothed time series (likely due to the first two Fourier harmonics in the smoothed433

time series being insufficient to capture the sharp gradient).434

For a given application the best choice of τ for estimating the seasonal-scale O-F mean435

differences will depend on the relative variability of the innovations at seasonal and sub-436

seasonal time scales. For geostationary Tskin assimilation, a compromise value of τ = 20437

days has been selected, since this produced b+ time series with reasonably smooth seasonal438

cycles that did not lag the O-F time series by too much (Figure 3).439

With a τ of 20 days, Figure 4 compares histograms of the state update innovations at440

21:00 UTC at the same three locations plotted in Figure 3, for both the bias-blind assim-441

ilation experiments and the two-stage observation bias and state estimation scheme. As442

expected, the innovation distributions for the bias-blind assimilation are biased, with mean443

values between 1.3 K and 8.0 K (Figures 4a-c). The inclusion of the observation bias correc-444

tion reduced the mean innovations to magnitudes less than 0.5 K at each location (Figures445

4d-f). The observation bias correction also changed the shape of the innovation distributions446

in Figure 4, reducing their spread and skew. Consequently, the standard deviation at each447
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site is reduced, with the greatest reductions occurring at Sioux Falls, from 4.0 K for the448

bias-blind assimilation to 2.5 K with the observation bias correction. The altered shape of449

the innovation distribution is a consequence of the nonstationary bias estimation method450

accounting for seasonal-scale evolution of the O-F mean difference. In contrast, if a single451

(stationary) correction were applied to the mean over the full time period, the higher order452

moments of the innovation distribution would have been unchanged.453

The histograms in Figure 4 are representative of the performance of the observation bias454

correction across the full domain, and throughout the diurnal cycle. For example, for both455

satellites in Figure 2, the two-stage filter reduced the spatial mean O-F mean difference to456

magnitudes between 0.0 - 0.3 K throughout the day, compared to bias-blind maxima of 5.1457

K and 2.8 K, for GOES-West and GOES-East, respectively. Likewise the mean standard458

deviation of the innovations across the domain was also reduced throughout the diurnal cycle459

(not shown), for example from 3.8 K to 3.1 K for GOES-West, and from 2.7 K to 2.1 K for460

GOES-East, both at 21:00 UTC.461

Finally, in Section 2d it was hypothesized that for the assimilation of Tskin, the vari-462

ability of modeled and observed estimates is reasonably well constrained so that adjusting463

the mean seasonal cycle of the observations (with the two-stage filter) would be sufficient464

to address the systematic differences between the observed and forecast estimates. Compar-465

ing the variance of the observed and forecast Tskin confirms that this was the case in the466

assimilation experiments performed here. For example, over the Americas at 21:00 UTC,467

the spatially averaged temporal standard deviation of the GOES-West observations was 8.0468

K, compared to 7.3 K for the model forecasts over the same domain, with a spatial mean469

absolute difference between their standard deviations of 1.1 K. Likewise, for GOES-East at470

21:00 UTC the mean standard deviation was 5.1 K, compared to 4.9 K for the forecasts,471

with a spatial mean absolute difference of 0.9 K. The two-stage observation bias correction472

reduced the differences in the variance, and the ‘bias corrected’ observations had spatially473

averaged standard deviations very close to the model forecasts, of 7.6 K for GOES-West,474
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with a spatial mean absolute difference of just 0.4 K, and of 5.1 K for GOES-East, giving a475

spatial mean absolute difference of 0.3 K.476

b. Global O-F mean difference maps477

Figure 5 shows maps of the estimated b+ at 9:00 UTC on June 1, July 1, and August 1,478

2012. There is substantial spatial variation in the b+, with a clear signal of land surface con-479

ditions. There are no obvious discontinuities between the b+ estimated for adjacent satellites480

in Figure 5, although the limited regions of overlapping observations from neighboring satel-481

lites (at sufficiently small viewing angles) makes the direct assessment of such discontinuities482

difficult. At 9:00 UTC it is daytime over Africa and Europe, and this region has the largest483

estimated b+ in Figure 5, with distinct regions of large positive values (> 10 K) in the drier484

regions of Africa, the Arabian peninsula, and western Asia, with a band of negative values485

(< −5 K) over equatorial Africa. In contrast, the regions experiencing nighttime generally486

have smaller b+ (magnitude <5 K), except for the drier regions of western North America487

and Australia, with mean differences of 5-10 K. This tendency for very large positive day-488

time b+ over dry regions occurs consistently across the globe, particularly in the summer489

hemisphere; the same pattern was evident in Figure 2 for GOES-West, which observes the490

arid southwest of the US. In terms of the temporal evolution of the b+, the large-scale spatial491

patterns are consistent between the three months plotted in Figure 5, although the gradual492

evolution of the b+ estimates is evident.493

c. Evaluation against independent Tskin observations494

Figures 6 and 7 demonstrate that the two-stage observation bias and state estimation495

filter improved the modeled Tsurf sub-seasonal-scale variability, compared to independent496

observations, albeit by a modest amount. In Figure 6 the mean ubRMSD of the assimilation497

estimates versus SURFRAD observations is reduced at each time of day by between 0.05 K498
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- 0.31 K (∼5-10%), with the greatest improvements (>0.2 K) occurring during the first half499

of the day (09:00-15:00 UTC). The ubRMSD across all times of day is significantly reduced500

(at a 5% level) from 2.1 K to 1.9 K.501

Similar results were obtained by comparison to Terra and Aqua MODIS Tskin observations502

over the Americas, as shown in Figure 7. During the night, the open-loop ubRMSD was503

already very small, with a spatial mean of 1.9 K for both Terra and Aqua. During the504

day, the open-loop ubRMSD was much larger, except over the Amazon, with a spatial mean505

of 3.6 K for both Terra and Aqua. For all MODIS overpasses, the assimilation consistently506

improved the model fit to the MODIS data across the domain, except over the Amazon where507

the open-loop ubRMSD was already very low and the improvement from the assimilation508

was weaker, and even slightly negative in places. While the consistency of the positive509

improvements in Figure 7 is encouraging, these improvements were significant (at the 5%510

level) over only a small fraction (<10%) of the domain. For each MODIS orbit direction511

the spatial mean ubRMSD across the domain is shown in Table 2, and in each case the512

assimilation reduced the spatial mean ubRMSD by around 10% of the open-loop value, with513

ubRMSD reductions of 0.1 - 0.2 K during the nighttime, and 0.2-0.3 K during the daytime.514

While the above evaluation consistently indicates that the Tskin assimilation has improved515

the model Tsurf , the improvements are rather modest. This is despite the use of only516

assimilation update times in the evaluation, which will have exaggerated the assimilation517

impact. There are several reasons for the modest results. Most importantly, the skill of the518

model Tsurf , in terms of the anomaly behavior assessed here, is already very good. Also, the519

Catchment model Tsurf has an extremely short memory, associated with its very low heat520

capacity, hence the analysis updates do not persist into the subsequent model time step, and521

the model has very little memory of improvements previously gained from the assimilation.522

Including GHT1 in the state update vector did not increase the Tsurf memory of previous523

analysis updates, since the Tsurf dynamics are dominated by the radiation budget. Finally,524

the lack of memory is compounded by the low data volume associated with the lack of525

21



TIR observations under cloudy conditions. The modest impact of the assimilation is not526

related to the observation bias correction method, since similar results were obtained using527

cumulative distribution functions (Reichle and Koster 2004) to rescale the observations (not528

shown).529

5. Summary and conclusions530

A two-stage observation bias and state estimation scheme has been developed for use in531

land data assimilation. In this scheme, the observation-minus-forecast (O-F) mean differ-532

ences are estimated and removed from the innovations prior to updating the model state.533

In applications where the model predictions are bias-free, the two-stage filter could also be534

used to correct the observations towards the true mean state. The presented method is com-535

putationally affordable, straightforward to implement in an existing assimilation, requires536

specification of only a single additional parameter, and can be used to assimilate satellite537

radiances or retrieved geophysical variables. In contrast to the observation rescaling meth-538

ods currently used in land data assimilation systems, the two-stage filter does not require539

a long data record. Hence, it has the potential to facilitate the use and success of land540

data assimilation, particularly in atmospheric modeling systems for which long records of541

consistently forecast land surface estimates are typically not available.542

The two-stage filter includes a parameterization of the Kalman gain for the bias update543

that introduces an explicit specification of the time scale of the O-F mean differences. Defin-544

ing the O-F mean difference over seasonal time scales allows the assimilation to update the545

model state vector in response to sub-seasonal-scale (e.g., synoptic scale) differences between546

observed and forecast estimates.547

In experiments assimilating geostationary Tskin observations into the Catchment land548

surface model, the two-stage filter effectively removed the O-F mean difference from the549

observations, and consequently improved synoptic-scale dynamics in the model Tsurf (the550
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model equivalent variable to Tskin). These improvements were measured using the ubRMSD551

with independent estimates of Tskin from the SURFRAD network (at six sites in the US),552

and from MODIS satellite observations over the Americas. While modest, the improvements553

highlight the potential value of the geostationary Tskin for future modeling efforts.554

Global maps of the O-F mean differences estimated by the two-stage filter show clear555

spatial coherence, with a signal of local land surface conditions. Most prominently, there556

is a strong tendency for large positive O-F differences in dry regions during the daytime.557

In this study, the O-F mean difference was estimated independently at each model grid558

cell. However, the spatial cohesion of the estimates suggests the potential to improve the559

two-stage filter design by incorporating horizontal information into the observation bias560

estimates. This could be achieved by either including spatial smoothing in the bias forecast561

model (assuming correlations between the O-F mean difference in adjacent areas), or by562

implementing the bias update using a 3-D filter (assuming correlations between the errors563

in the O-F mean difference estimates).564

In addition to the difficulty of obtaining suitable data records for observation rescaling,565

several studies have highlighted other shortcomings arising from the stationary nature of the566

observation rescaling approaches for bias correction. For example, the inability of a station-567

ary approach (CDF-matching) to distinguish between near-surface soil moisture variability568

over seasonal and sub-seasonal time scales can result in inadequate matching of the seasonal569

cycles between forecast estimates and CDF-matched observations (Draper et al. 2009). Also570

Drusch et al. (2005) argues that uncertainty in the inter-annual variability of the vegetation571

characteristics used in both soil moisture retrieval and land surface modeling may necessi-572

tate nonstationary observation bias correction methods, based on either frequent updates of573

observation rescaling coefficients, or the use of more sophisticated methods. More recently,574

Crow et al. (2011) showed that results from the assimilation of remotely sensed soil moisture575

into a simple water balance model were improved by using seasonally variable observation576

rescaling coefficients for adjusting the mean. The nonstationary nature of filtering may also577
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have practical advantages for the estimation of O-F mean differences, in that the estimates578

can respond to step changes, caused for example, by changes in the forecast model, remote579

sensor, or retrieval model. Hence, in atmospheric assimilation the ability of variational ob-580

servation bias correction schemes to respond to temporal changes in the bias has proven581

beneficial (Auligné et al. 2007; Dee and Uppala 2009).582

Unlike observation rescaling, the two-stage filter presented here does not explicitly ad-583

dress systematic differences between higher-order moments of the observations and the model584

estimates. For the Tskin assimilation experiments presented here, the two-stage filter proved585

sufficient. However, other land surface variables, including near-surface soil moisture, can586

have large systematic differences in the sub-seasonal-scale variability of observed and forecast587

estimates. Work is underway to expand the two-stage filter to also account for systematic dif-588

ferences in the higher order moments, thus providing an alternative to observation rescaling589

for soil moisture data assimilation.590
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APPENDIX597

598

Appendix A. Derivation of Lk.599

In the bias state update equation (equation 8), the model state, observation bias, and600

observation estimates can each be partitioned into their true value, a random (zero-mean)601

error, and for the observations a long term mean error (bias): x−

k = xk + ex−, and b−k =602

bk + eb−, and ỹo
k = ỹk + eo

k = yk + bk + eo
k, where e represents the random error in the603

superscripted variable. To derive Lk, minimize the expected error in b+

k , P b+
k = E[eb+(eb+)T ],604

where E is the expectation over time. Substituting equation 8 into P b+
k , then partitioning605

each variable into its constituent parts gives:606

607

P b+
k = E[(b+

k − bk)(b
+

k − bk)
T ] (A1)

= E[(b−k + Lk < ỹk
o − b−k − Hkx

−

k > −bk)(b
−

k + Lk < ỹk
o − b−k − Hkx

−

k > −bk)
T ] (A2)

= E[(eb−
k + Lk < eo

k − eb−
k − Hke

x−
k >)(eb−

k + Lk < eo
k − eb−

k − Hke
x−
k >)T ] (A3)

The derivative of P b+
k w.r.t Lk is:608

609

δP b+
k

δLk

= 2E[(eb−
k + Lk < eo

k − eb−
k − Hke

x−
k >)(< eo

k − eb−
k − Hke

x−
k >)T )] (A4)

Setting the derivative to zero, and solving for L, gives the P b+
k minimum:610

611

Lk = E[−eb−
k (< eo

k − eb−
k − Hke

xk−

k >)T (< eo
k − eb−

k − Hke
x−
k > (< eo

k − eb−
k − Hke

x−
k >)T )−1]

(A5)

If eo
k, eb−

k , and ex−
k are not cross-correlated with each other, the expectation is:612
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613

Lk = P b−
k (Ro + P b−

k + HkP
x−
k HT

k )−1 (A6)

614

Appendix B. Derivation of K̃, and equivalence to K.615

To derive K̃ minimize the expected error x+

k,i, P x+ = E[(ex+

k )(ex+

k )T ]. Substituting616

equation 11 into P x+

k , and as in Appendix A, partitioning each variable into its constituent617

terms, gives:618

619

P x+ = E[(x+

k − xk)(x
+

k − xk)
T ] (A7)

= E[(x−

k + K̃k(ỹ
o
k − b−k − Hkx

−

k ) − K̃kLk < ỹo
k − b−k − Hkx

−

k > −xk)

(x−

k + K̃k(ỹ
o
k − b−k − Hkx

−

k ) − K̃kLk < ỹo
k − b−k − Hkx

−

k > −xk)
T ] (A8)

= E[(ex−
k + K̃k(e

o
k − eb−

k − Hke
x−
k ) − K̃kLk < eo

k − eb−
k − Hke

x−
k >)

(ex−
k + K̃k(e

o
k − eb−

k − Hke
x−
k ) − K̃kLk < eo

k − eb−
k − Hke

x−
k >)T ] (A9)

The derivative of P x+

k w.r.t K̃k is:620

621

δP x+

k

δK̃k

= 2E[(ex−
k + K̃k(e

o
k − eb−

k − Hke
x−
k ) − K̃kLk < eo

k − eb−
k − Hke

x−
k >)

(eo
k − eb−

k − Hke
x−
k − Lk < eo

k − eb−
k − Hke

x−
k >)T ] (A10)

If eo, ex−, and eb− are not cross-correlated with each other, setting the derivatives to zero622

to minimize P x+

k , and taking the expectation gives:623

624

K̃k(I − Lk) = P x−
k HT

k (Ro + P b−
k + HkP

x−
k HT

k )−1 (A11)
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Substituting equation 9 into A11 gives:625

626

K̃k(I − P b−
k (Ro + P b−

k + HkP
x−
k HT

k )−1) = P x−
k HT

k (Ro + P b−
k + HkP

x−
k HT

k )−1 (A12)

K̃k(R
o + P b−

k + HkP
x−
k HT

k − P b−
k ) = P x−

k HT
k (A13)

K̃ = P x−
k HT

k (Ro + HkP
x−
k HT

k )−1 (A14)

which is the same as equation 4 for the Kalman gain for the bias-free EnKF state update.627

This demonstrates that the inclusion of the observation bias estimate from the two-stage628

state and bias estimation does not change the expression of the solution for the Kalman gain629

for the state update in equation 10 (assuming that equation 9 is used for Lk).630
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Table 1. Ensemble Generation Perturbation Parameters for Forcing and Model Prognostic
Variables.

(A)dditive, or Standard AR(1) Perturbation
(M)ultiplicative Deviation Time Scale cross-correlation

GHT1 T2m SW LW
Tsurf A 0.2 K 12 hours 0.7 0 0 0
GHT1 A 50,000 J 12 hours - 0 0 0
2m air temp (T2m) A 1 K 24 hours - 0.4 0.4
SW radiation M 0.3 24 hours - -0.6
LW radiation A 20 Wm−2 24 hours -
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Table 2. Spatial Mean of the ubRMSD (K) with MODIS Tskin Reported in Figure 7.
MODIS overpass

Experiment Nighttime Daytime
Terra Aqua Terra Aqua

Open-loop 1.89 1.94 3.62 3.60
Tskin assimilation 1.70 1.79 3.36 3.42
Difference 0.19 0.15 0.27 0.18
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Fig. 1. Coverage of the assimilated GOES-West and GOES-East Tskin observations from 1
June, 2012 to 31 May, 2013, as a fraction of the maximum possible coverage (eight obser-
vations every day). The locations of the SURFRAD measurement stations are marked as
DRA (Desert Rock), TBL (Table Mountain), SXF (Sioux Falls), GWN (Goodwin Creek),
BON (Bondville), and PSU (Penn State). The plotted meridians demark the GOES-West
and GOES-East domains.
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Fig. 2. Diurnal cycle of the Tskin O-F mean difference, averaged over the Americas, for
a bias-blind assimilation (solid) and the two-stage observation bias and state estimation
bias-aware assimilation with τ =20 days (dashed), for GOES-West (black) and GOES-East
(grey).
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Fig. 3. The Tskin O-F residuals [K] at 21:00 UTC (black crosses) at the a) Goodwin Creek,
b) Sioux Falls, and c) Desert Rock SURFRAD sites. Black lines show the smoothed O-F
time series using the first two annual Fourier harmonics. Dots show the bias estimates from
the two-stage observation bias correction scheme using (dark blue) τ=10 days, (light blue)
τ = 20 days, and (pink) τ=30 days.
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Fig. 4. Histograms of the state update innovations at 21:00 UTC, for the assimilation of geo-
stationary Tskin, at the Goodwin Creek (GWN), Sioux Falls (SXF), and Desert Rock (DRA)
SURFRAD sites, for a bias-blind assimilation (upper), and for the two-stage observation
bias and state estimation bias-aware assimilation with τ=20 days (lower).
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Fig. 5. Observation-minus-forecast Tskin mean difference, estimated at 09:00 UTC on first
a) June, b) July, and c) August, 2012. Values are shown only where the observation bias
estimate is considered valid for use in the state update equation. The plotted meridians
demark the domain of each satellite: [-175◦,-105◦] GOES-West, [-105◦,-37◦] GOES-East,[-
37◦, 54◦] MTSAT-2, [54◦,90◦] FY-2E, and [90◦,-175◦] Met-9.
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Fig. 6. ubRMSD with SURFRAD Tskin, calculated separately for each SURFRAD site and
each observation time, for the assimilation of geostationary observations with the two-stage
filter (filled circles), and the open-loop (unfilled circles). The mean ubRMSD at each time
of day for the assimilation (open-loop) is indicated by the solid (dashed) line.
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Fig. 7. ubRMSD with MODIS Tskin for the open-loop (upper), and the improvement in the
ubRMSD gained from the assimilating geostationary Tskin with the two stage filter (lower: ∆
ubRMSD=ubRMSD of open-loop - ubRMSD of assimilation), separately for each Terra and
Aqua overpass direction. Grey indicates < 30 coincident geostationary and MODIS Tskin

observations. The plotted meridians demark the GOES-West and GOES-East domains.
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