Modeling contamination migration on the Chandra X-ray Observatory — III

Steve O’Dell, Doug Swartz, Neil Tice, Paul Plucinsky, Catherine Grant, Herman Marshall, Alexey Vikhlinin, Allyn Tennant, Matt Dahmer

NASA Marshall Space Flight Center
Universities Space Research Association
Massachusetts Institute of Technology
Smithsonian Astrophysical Observatory
Northrop Grumman

Modeling contamination migration on the Chandra X-ray Observatory — III
UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIX
2015 August 9-10, San Diego, CA USA
Outline

- Introduction
- Molecular contamination on ACIS filters
- Thermal model for ACIS cavity
- Molecular transport simulations
- Summary
Chandra’s Advanced CCD Imaging Spectrometer (ACIS)

- ACIS cavity
 - Collimator
 - Snoot & door
 - Camera top & filters (OBF)

- ACIS operating temperatures
 - Focal plane $T_{FP} = -120^\circ C$
 - Camera housing $T_{DH} = -60^\circ C$
 - $\approx 8^\circ C$ colder with heaters off
 - Optical blocking filters T_{OBF}
 - $\approx T_{DH} \approx -60^\circ C$ near OBF edge
 - 5–20°C warmer near center depending on emissivity ε_{OBF}

- Contamination on cold OBFs
 - Mass column $\approx 200 \mu g \text{ cm}^{-2}$.
 - $\leq 1 \text{ g}$ in entire Chandra optical cavity (calculated)
 - $\approx 30 \times$ pre-flight estimates
 - Thicker near OBF edge
Contamination-migration simulations for Chandra

2004 (I)
- Low-resolution geometrical model for ACIS cavity
- Supported bake-out decision in 2004

2013 (II)
- High-resolution geometrical model for ACIS cavity
- Higher emissivity for contaminated surfaces

2015 (III)
- Same model as 2013
- Will support bake-out decision in 2016
Outline

- Introduction
- Molecular contamination on ACIS filters
- Thermal model for ACIS cavity
- Molecular transport simulations
- Summary
Evolution of mass column, its rate, and composition

Accumulation of contaminants

- LETG/ACIS-S spectra
 - Atomic (C,O,F) edge depths
 - Thickest near OBF edges

Rate fell until about 2009 then started rising.

Composition changes indicate multiple species.
Temperature dependence of mass vaporization rate

Mass vaporization rates of some organic compounds

- tetradecane
- pentadecane
- hexadecane
- heptadecane
- octadecane
- nonadecane
- eicosane
- henicosane
- docosane
- tricosane
- tetracosane
- DOP

Vaporization rate D_{v} [$\mu g \text{ cm}^{-2} \text{ s}^{-1}$]

Temperature T [°C]
Most systems are warming.
- Continuing degradation of external insulation (MLI)
- Strive to keep ACIS focal plane cold to preserve performance.
 - Carefully plan observations.
 - Disabled some heaters.
 - ACIS detector-housing heater (2008 April)
 - A SIM focus-assembly heater (2009 August)
- Optical bench has warmed rapidly since about 2010.
 - New contamination source?
Outline

- Introduction
- Molecular contamination on ACIS filters
- Thermal model for ACIS cavity
- Molecular transport simulations
- Summary
ACIS geometric model (interior view)

- Interior view of ACIS cavity
 - Snoot & door inside collimator
 - Camera top with OBFSs

- High-resolution model maps temperature gradients
 - OBF: 121 I & 203 S nodes
 - Collimator: 12 axial zones

Modeling contamination migration on the Chandra X-ray Observatory — III
UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIX
2015 August 9-10, San Diego, CA USA
ACIS temperature distribution (operational conditions)

- DH heater OFF, \(T_{FP} = -120^\circ C \)
- \(T_{DH} = -60^\circ C, T_{FP} = -120^\circ C \)

\(\varepsilon_{OBF} = 0.40 \)

Modeling contamination migration on the Chandra X-ray Observatory — III
UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIX
2015 August 9-10, San Diego, CA USA

SPIE Conference 9601
Paper 6
Slide 11
ACIS temperature distribution (operational conditions)

- DH heater OFF, $T_{FP} = -120^\circ C$
- $T_{DH} = -60^\circ C$, $T_{FP} = -120^\circ C$

$\varepsilon_{OBF} = 0.40$

Modeling contamination migration on the Chandra X-ray Observatory — III
UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIX
2015 August 9-10, San Diego, CA USA

SPIE Conference 9601
Paper 6
Slide 12
ACIS temperature distribution (bake-out conditions)

- $T_{DH} = +25^\circ C$, $T_{FP} = -60^\circ C$
- $T_{DH} = +25^\circ C$, $T_{FP} = +25^\circ C$

$\varepsilon_{OBF} = 0.40$
ACIS temperature distribution (bake-out conditions)

- $T_{DH} = +25^\circ C, T_{FP} = -60^\circ C$
- $T_{DH} = +25^\circ C, T_{FP} = +25^\circ C$

Modeling contamination migration on the Chandra X-ray Observatory — III

UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIX
2015 August 9-10, San Diego, CA USA
Outline

- Introduction
- Molecular contamination on ACIS filters
- Thermal model for ACIS cavity
- Molecular transport simulations
- Summary
Molecular flux equations and geometric view factors

- Net mass flux onto node j
 \[
 \frac{d\mu_j}{dt} = -\dot{\mu}_v(T_j)\Theta(\mu_j) + \sum_k \dot{\mu}_v(T_k)\Theta(\mu_k) f_{jk} \frac{A_k}{A_j}
 \]

- Mass vaporization flux
 - Related to vapor pressure
 \[
 \dot{\mu}_v(T) = \frac{P_v(T)}{\sqrt{2\pi RT/M}}
 \]

- Clausius–Clapeyron relation
 - Temperature dependence
 - Vaporization enthalpy \(\Delta_v H \)

 \[
 P_v(T) = P_v(T_o) \exp\left[\frac{-\Delta_v H}{R} \left(\frac{1}{T} - \frac{1}{T_o}\right)\right]
 \]

 \[
 \dot{\mu}_v(T) = \dot{\mu}_v(T_o) \sqrt{\frac{T_o}{T}} \exp\left[\frac{-\Delta_v H}{R} \left(\frac{1}{T} - \frac{1}{T_o}\right)\right]
 \]

- Geometric view factors
 \[
 f_{jk} = n_k \cdot \Omega_{jk} / \pi
 \]

- Modeling contamination migration on the Chandra X-ray Observatory — III
 \[UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIX\]
 2015 August 9-10, San Diego, CA USA
Simulations of contaminant accumulation onto ACIS OBFS

- Lower volatility contaminant
 - Deposition dominates.
 - Accumulates most at center.

- Higher volatility contaminant
 - Vaporization is significant.
 - Accumulates most at edges.

Modeling contamination migration on the Chandra X-ray Observatory — III
UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIX
2015 August 9-10, San Diego, CA USA
Accumulation simulation: two components

- **Low-volatility component**
 - Source rate drops exponentially due to depletion.
 - 3.7-year timescale

- **Medium-volatility component**
 - Source rate rises with increasing optical-bench T_{OB}.
 - $\propto \exp[-\text{constant}/T_{OB}]$
 - Rises until source depletion occurs.
Vaporization rate: Dependence upon phase state

Mass vaporization rates of a solid and of a liquid

- Octadecane
- DOP

Vaporization rate $D_{v,p}$ [μg cm$^{-2}$ s$^{-1}$]

Temperature T [°C]

Modeling contamination migration on the Chandra X-ray Observatory — III
UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIX
2015 August 9-10, San Diego, CA USA
Bake-out simulation: Octadecane mass

- **Warm focal plane**
 - \(T_{DH} = +25^\circ C \)
 - \(T_{FP} = +25^\circ C \)

- **Cool focal plane**
 - \(T_{DH} = +25^\circ C \)
 - \(T_{FP} = -60^\circ C \)

Modeling contamination migration on the Chandra X-ray Observatory — III

UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIX

2015 August 9-10, San Diego, CA USA

SPIE Conference 9601
Paper 6
Slide 20
Bake-out simulation: Octadecane column

- **Warm focal plane**
 - $T_{DH} = +25^\circ C$
 - $T_{FP} = +25^\circ C$

- **Cool focal plane**
 - $T_{DH} = +25^\circ C$
 - $T_{FP} = -60^\circ C$

Modeling contamination migration on the Chandra X-ray Observatory — III
UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIX
2015 August 9-10, San Diego, CA USA

SPIE Conference 9601
Paper 6
Slide 21
Warm focal plane
- $T_{DH} = +25^\circ C$
- $T_{FP} = +25^\circ C$

Cool focal plane
- $T_{DH} = +25^\circ C$
- $T_{FP} = -60^\circ C$
Bake-out simulation: Dioctyl phthalate column

- **Warm focal plane**
 - $T_{DH} = +25^\circ C$
 - $T_{FP} = +25^\circ C$

- **Cool focal plane**
 - $T_{DH} = +25^\circ C$
 - $T_{FP} = -60^\circ C$

Modeling contamination migration on the Chandra X-ray Observatory — III

SPIE Conference 9601

UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIX

2015 August 9-10, San Diego, CA USA
Outline

- Introduction
- Molecular contamination on ACIS filters
- Thermal model for ACIS cavity
- Molecular transport simulations
- Summary
Summary

- Contamination-migration simulation provides a useful tool.
 - Utility for absolute predictions is still limited.
 - Absolute predictions require knowledge of contaminant’s volatility.
 - Uncertainty in temperatures propagates exponentially to rate error.
 - Model may require additional physics.
 - Treatment of multiple molecular species
 - Dependence of thermal emissivity upon contaminant mass column
 - Affects temperature distribution and thus mass vaporization rate
 - Surface redistribution, especially for a liquid contaminant
- Will use model to provide input for a bake-out decision.
 - Constrain properties of molecular contaminant(s).
 - Simulate contamination migration under potential scenarios.
 - Turning housing heaters back ON
 - Various bake-out conditions for ACIS