Mars ISRU for Production of Mission Critical Consumables – Options, Recent Studies, and Current State of the Art

Gerald B. Sanders¹, Aaron Paz², Lara Oryshchyn³, and Koorosh Araghi⁴
NASA, Johnson Space Center, Houston, TX, 77058, USA

Anthony C. Muscatello⁵
NASA Glenn Research Center Cleveland, OH, 44135, USA

Diane L. Linne⁶, and Julie E. Kleinhenz⁷
NASA Kennedy Space Center, FL, 32899, USA

and

Todd Peters⁸
Jacobs Engineering, Houston, TX, 77598, USA

In 1978, a groundbreaking paper titled, “Feasibility of Rocket Propellant Production on Mars” by Ash, Dowler, and Varsi discussed how ascent propellants could be manufactured on the Mars surface from carbon dioxide collected from the atmosphere to reduce launch mass. Since then, the concept of making mission critical consumables such as propellants, fuel cell reactants, and life support consumables from local resources, commonly known as In-Situ Resource Utilization (ISRU), for robotic and human missions to Mars has been studied many times. In the late 1990’s, NASA initiated a series of Mars Human Design Reference Missions (DRMs), the first of which was released in 1997. These studies primarily focused on evaluating the impact of making propellants on Mars for crew ascent to Mars orbit, but creating large caches of life support consumables (water & oxygen) as a backup for regenerative life support systems for long-duration surface stays (>500 days) was also considered in Mars DRM 3.0. Until science data from the Mars Odyssey orbiter and subsequent robotic missions revealed that water may be widely accessible across the surface of Mars, prior Mars ISRU studies were limited to processing Mars atmospheric resources (carbon dioxide, nitrogen, argon, oxygen, and water vapor). In December 2007, NASA completed the Mars Human Design Reference Architecture (DRA) 5.0 study which considered water on Mars as a potential resource for the first time in a human mission architecture. While knowledge of both water resources on Mars and the hardware required to excavate and extract the water were very preliminary, the study concluded that a significant reduction in mass and significant enhancements to the mission architecture were possible if Mars water resources were utilized. Two subsequent Mars ISRU studies aimed at reexamining ISRU technologies, processing options, and advancements in the state-of-the-art since 2007 and to better understand the volume and packaging associated with Mars ISRU systems further substantiated the preliminary results from the Mars DRA 5.0 study. This paper will provide an overview of Mars ISRU consumable production options, the analyses, results, and conclusions from the Mars DRA 5.0 (2007), Mars Collaborative (2013), and Mars ISRU Payload for the Supersonic Retro Propulsion (2014) mission studies, and the current state-of-the-art of Mars ISRU technologies and systems. The paper will also briefly discuss the mission architectural implications associated with Mars resource and ISRU processing options.

¹ ISRU Chief Engineering, Energy Conversion Systems Branch, EP3, AIAA Member.
² ISRU Engineer, Energy Conversion Systems Branch, EP3, AIAA Member.
³ Engineer, Energy Conversion Systems Branch, EP3, AIAA Member.
⁴ Fuel Cell and Electrolysis Technology Manager /PI, Energy Conversion System Branch, EP3, AIAA Member.
⁵ Chemist, Applied Science, UB-R3, non AIAA member.
⁶ Senior Research Engineer, Propulsion Division, MS 301-3, AIAA Associate Fellow.
⁷ Research Engineer, Propulsion Division, MS 301-3, AIAA Senior Member.
⁸ Manager, Energy Systems Test Area, EP6, non AIAA Member.

American Institute of Aeronautics and Astronautics
Mars ISRU for Production of Mission Critical Consumables – Options, Recent Studies, and Current State of the Art

Sept. 1st, 2015

AIAA Space 2015 Conference, Pasadena, CA

G. B. Sanders¹, A. Paz¹, L. Oryshchyn¹, K. Araghi¹, A. Muscatello², D. Linne³, J. Kleinhenz³, and T. Peters⁴

1. NASA Johnson Space Center, Houston, TX,
2. NASA Kennedy Space Center, KSC, FL
3. NASA Glenn Research Center, Cleveland, OH
4. Jacobs Engineering, Houston, TSX
Past Mars Studies with ISRU (DRM 1 to 4)
- Only considered atmospheric resources were available (CO$_2$, N$_2$, Ar)
- Evaluated two propellant production options
 - Make Oxygen (O$_2$) only and bring fuel from Earth
 - Make O$_2$ and methane (CH$_4$) with hydrogen (H$_2$) brought from Earth
- Produced various amounts of life support consumables as backup
 - Ex. DRM 3: 4500 kg of O$_2$; 3900 kg of N$_2$; 23,200 kg of water (H$_2$O)
- ISRU considered only after performing non-ISRU scenario
 - No change in Mars entry or rendezvous orbit compared to non-ISRU scenario
 - Influence of ISRU consumable availability or technologies not considered on other systems
- Decisions made on basis of mass/power comparisons. Did not evaluate volume required for ISRU hardware or hydrogen delivered from Earth

Recent Mars Studies with ISRU
- Considered both atmospheric (CO$_2$, N$_2$, Ar) and soil (H$_2$O) resources based on increasing knowledge from Mars Odyssey and subsequent missions
 1. Mars Design Reference Architecture (DRA) 5.0 – 2007
 - First study to consider water as a resource; understanding of water on Mars and ISRU hardware for soil excavation and processing was very preliminary
 2. Mars Collaborative Study (HEOMD, STMD, SMD) – 2013
 - Increased understanding of water on Mars and ISRU hardware needed for soil processing based on lunar ISRU development and ISRU analog field test experience
 - First study to examine volume/packaging of ISRU production options
The Chemistry of Mars ISRU

Oxygen (O₂) Production Only

- **Reverse Water Gas Shift (RWGS)**
 \[
 \text{CO}_2 + \text{H}_2 \xleftrightarrow{400 - 650 \degree C} \text{CO} + \text{H}_2\text{O}
 \]

- **Bosch**
 \[
 \text{CO}_2 + 2 \text{H}_2 \xrightarrow{450 - 600 \degree C} \text{C} + 2 \text{H}_2\text{O}
 \]

- **Zirconia Solid Oxide CO₂ Electrolysis (SOE)**
 \[
 2 \text{CO}_2 \xrightarrow{900 - 1000 \degree C} 2 \text{CO} + \text{O}_2
 \]

Oxygen (O₂) & Methane (CH₄) Production

- **Sabatier Catalytic Reactor (SR)**
 \[
 \text{CO}_2 + 4 \text{H}_2 \xrightarrow{200 - 300 \degree C} \text{CH}_4 + 2 \text{H}_2\text{O}
 \]

- **Methane Reformer**
 \[
 \text{CO} + 3 \text{H}_2 \xrightarrow{250 \degree C} \text{CH}_4 + \text{H}_2\text{O}
 \]

- **Fischer-Tropsch (FT)**
 \[
 n \text{CO} + (2n+1) \text{H}_2 \xrightarrow{>150 \degree C} \text{C}_n\text{H}_{2n+2} + n \text{H}_2\text{O}
 \]

Other Hydrocarbon Fuel Production

- **Electrochemical Reduction**
 \[
 \text{CO}_2 + 2 \text{H}_2\text{O} \xrightarrow{} \text{CH}_4 + 2 \text{O}_2
 \]

- **Methanol**
 \[
 \text{CO} + 2 \text{H}_2 \xrightarrow{250 \degree C} \text{CH}_3\text{OH}
 \]

- **Dry Reforming**
 \[
 \text{CO}_2 + 3 \text{H}_2 \xrightarrow{50 - 100 \text{ atm}} \text{CH}_3\text{OH} + \text{H}_2\text{O}
 \]

Oxygen (O₂) &/or Hydrogen (H₂) Production

- **Steam Reforming**
 \[
 \text{H}_2\text{O} + \text{CH}_4 \xrightarrow{} 3 \text{H}_2 + \text{CO}
 \]

- **Water Electrolysis (WE)**
 \[
 2 \text{H}_2\text{O} \xrightarrow{} 2 \text{H}_2 + \text{O}_2
 \]

- **Dry Reforming**
 \[
 \text{CO}_2 + \text{CH}_4 \xrightarrow{} 2 \text{H}_2 + 2 \text{CO}
 \]

- **Oxygen (O₂) Production Only**
 \[
 2 \text{H}_2\text{O} \xrightarrow{} 2 \text{H}_2 + \text{O}_2
 \]

- **Oxygen (O₂) & Methane (CH₄) Production**
 \[
 \text{H}_2\text{O} + \text{CH}_4 \xrightarrow{} 3 \text{H}_2 + \text{CO}
 \]

- **Other Hydrocarbon Fuel Production**
 \[
 \text{CO}_2 + 3 \text{H}_2 \xrightarrow{} \text{CH}_3\text{OH} + \text{H}_2\text{O}
 \]

- **Oxygen (O₂) &/or Hydrogen (H₂) Production**
 \[
 \text{CO}_2 + 3 \text{H}_2 \xrightarrow{} \text{CH}_3\text{OH} + \text{H}_2\text{O}
 \]

- **Steam Reforming**
 \[
 \text{H}_2\text{O} + \text{CH}_4 \xrightarrow{} 3 \text{H}_2 + \text{CO}
 \]

- **Dry Reforming**
 \[
 \text{CO}_2 + \text{CH}_4 \xrightarrow{} 2 \text{H}_2 + 2 \text{CO}
 \]

G. Sanders, (281) 483-9066, gerald.b.sanders1@jsc.nasa.gov
Mars Design Reference Architecture (DRA) 5.0
Mars ISRU Depends on Resource of Interest

Atmospheric Resource Processing

Strengths
- Atmospheric resources are globally obtainable (no landing site limitations)
- Production of O_2 only from carbon dioxide (CO_2) makes >75% of ascent propellant mass
- Significant research and testing performed on several methods of atmospheric collection, separation, and processing into oxygen and fuel; including life support development

Weaknesses
- Production of methane requires delivery of hydrogen (H_2) from Earth which is volume inefficient or water from the Mars soil (below)
- Mars optimized ISRU processing may not use baseline ECLSS technologies

Mars Soil Water Resource Processing (ties to Lunar Ice & Regolith)

Strengths
- Surface material characteristics studied from Mars robotic landers and rovers
- Water (in the form of hydrated minerals) identified globally near the surface
- Lunar regolith excavation and thermal processing techniques can be utilized for Mars
- Low concentrations of water in surface hydrated mineral soil (3%) still provides tremendous mass benefits with minimal planetary protection issues

Weaknesses
- Risk associated with the complexity of the required surface infrastructure must be evaluated. Significant autonomous operations required.
- Local/site dependency on water resource concentration and form
- Concerns from planetary protection and search for life with subsurface material processing

G. Sanders, (281) 483-9066, gerald.b.sanders1@jsc.nasa.gov
Four Options for Mars ISRU Ascent Propellant Production:

1. Make oxygen (O_2) from Mars atmosphere carbon dioxide (CO_2); Bring fuel from Earth
2. Make O_2 and fuel/CH_4 from Mars atmosphere CO_2 and hydrogen (H_2) from Earth
3. Make O_2 and fuel/CH_4 from Mars atmosphere CO_2 and water (H_2O) from Mars soil
4. Make O_2 and H_2 from H_2O in Mars soil

<table>
<thead>
<tr>
<th>Enabling or Enhancing</th>
<th>ISRU Resource Processing Options</th>
<th>ISRU Products</th>
<th>Mars Resource(s)</th>
<th>Earth Supplied</th>
<th>Process Subsystems/Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmosphere Processing</td>
<td>O_2, CO_2, O_2, CH_4, H_2O</td>
<td>CH_4 (~6600 kg)</td>
<td>H_2* (~2000 kg)</td>
<td>[]</td>
<td>Solid Oxide CO_2 Electrolysis</td>
</tr>
<tr>
<td>Soil Processing</td>
<td>O_2, CH_4, H_2O, H_2O</td>
<td>CH_4 (~6600 kg)</td>
<td></td>
<td>[]</td>
<td>Solid Oxide CO_2 Electrolysis</td>
</tr>
</tbody>
</table>

* H_2 for water and methane production
** Assumes methane fuel vs hydrogen fuel for propulsion

1, 2, & 3 Were Evaluated in Mars DRA 5.0
Mars Water Form & Distribution

New Craters Confirm Shallow, Nearly Pure Ice
- Newly formed craters exposing water ice (red) are a subset of all new craters (yellow).
 Background color is TES dust index. (Adapted from Byrne et al. (2011) Science)

Mid- and high-latitude shallow ice

Thought to be dominated by hydrated minerals

Mid-Latitude Ice-Rich Mantles
Water Abundance and Mars Altitude

Water resources between 5-8% near the surface is highly possible for ISRU
Mars Design Reference Architecture (DRA) 5.0

- **Evaluate Atmosphere Processing Only**
 - Re-evaluate past technologies and system concepts and perform internal trade to determine best approach for following three ISRU applications:
 - Propellant production only
 - EVA and Life support backup only
 - Combined propellant and EVA/life support backup
 - Evaluate H\textsubscript{2} delivery vs fuel delivery from Earth on Lander *volume* and mass. Use habitat lander as basis of ‘goodness’

- **Evaluate Feasibility and Size of Mars Soil/Water Processing System**
 - Make O\textsubscript{2} and CH\textsubscript{4} with Mars water and atmospheric CO\textsubscript{2}
 - Define Mars soil and water properties at possible exploration sites of interest
 - Coordinate with Science community
 - ISRU study assumed 3-8% global concentration and only top few centimeters was excavated/processed due to Planetary Protection concerns

- **Evaluate ISRU on Mars Architecture above simple impact on ascent vehicle and surface systems**
 - Evaluate both circular and highly elliptical orbit impact of ISRU-fuel ascent vehicle on Architecture

- **ISRU Production Requirements**

<table>
<thead>
<tr>
<th>ISRU to Close Crew & EVA Consumables</th>
<th>Amount needed per 550 days - crew 6</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O\textsubscript{2}</td>
<td>Water</td>
</tr>
<tr>
<td>- Mars Atm. Processing only</td>
<td>1906</td>
<td>133</td>
</tr>
<tr>
<td>- Mars Soil Processing only</td>
<td>2146</td>
<td>133</td>
</tr>
<tr>
<td>- Mars Atm. & Soil Processing</td>
<td>1281</td>
<td>2146</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISRU for All Consumables</th>
<th>O\textsubscript{2}</th>
<th>Water</th>
<th>N\textsubscript{2}/Ar</th>
<th>Earth H\textsubscript{2}</th>
<th>Earth CH	extsubscript{4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>O\textsubscript{2} Only for Propulsion w/ Earth CH\textsubscript{4}</td>
<td>24891</td>
<td>133</td>
<td>399</td>
<td>6567</td>
<td></td>
</tr>
<tr>
<td>O\textsubscript{2}/CH\textsubscript{4} Propellant for Propulsion w/ Earth H\textsubscript{2}O</td>
<td>24891</td>
<td>133</td>
<td>2069</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O\textsubscript{2}/CH\textsubscript{4} Propellant for Propulsion w/ Mars H\textsubscript{2}O</td>
<td>24266</td>
<td>16788</td>
<td>133</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G. Sanders, (281) 483-9066, gerald.b.sanders1@jsc.nasa.gov
Soil Excavation & Processing Assumptions & Ground Rules

- **Soil**
 - Water content in Mars soil 3% by weight; 1000 kg/m³; homogeneous distribution (no dry layer at top)
 - Also examined impact of 8% water by weight and 2000 kg/m³
 - 6% sulfur in soil by weight

- **Soil Excavation**
 - Excavation hauler vehicles; level ground
 - 8 hr case: assume each excavator can provide the needed 4 batches; continuous operation over the 8 hrs; recharge at night
 - 24 hr case: assume each excavator can provide the needed 6 batches; operate for 12 hrs and recharge for 12 hrs each day
 - Distance traveled: 500 m from site to plant (loaded); 500 m from plant to dump site (loaded); 500 m from dump site to excavation site (unloaded)
 - Speed: 0.5 m/s during hauling
 - Depth per cut: 4 cm; Total depth: 8 cm
 - Dump time to inlet hopper = 5 min.; Time to fill dump from outlet hopper = 5 min.
 - Excavation concept assumed: Front-end loader
 - Hauler concept assumed: Dump bin

- **Soil Processing**
 - Water extraction system includes: hopper, auger, extraction reactor (fluidized bed, H₂ reduction reactor model), gas clean-up (packed bed, desulfurization model), and water condenser
 - Processing energy provided by separate electrical power system
 - Soil processing batch time: 2 hrs
 - Inlet and outlet hoper sized to hold 2 days worth of Mars soil for processing for ECLSS cases and 1 day for propellant production
 - Heat up power is estimated using basalt model for lunar ISRU
 - Processing temperature – heat from soil from input 300K (27C) to processing 600K (327C)
Mars Human Exploration DRA 5.0
ISRU vs Non-ISRU Ascent Results

- **Lowest Power/Volume**: Process atmospheric CO₂ into O₂; Bring methane (CH₄) from Earth
- **Lowest Mass**: Process atmospheric CO₂ with Soil processing for H₂O into O₂ and CH₄
- **Study Results**
 - Atmosphere processing into O₂ baselined: **Lowest Risk**
 - Continue evaluation of water on Mars and soil processing to reduce risk

<table>
<thead>
<tr>
<th>DAV Mass (no ISRU)</th>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascent Stg 2</td>
<td>18,540 kg</td>
</tr>
<tr>
<td>Ascent Stg 1</td>
<td>27,902 kg</td>
</tr>
<tr>
<td>Minimal Habitat†</td>
<td>5687 kg</td>
</tr>
<tr>
<td>Descent stage*</td>
<td>27,300 kg</td>
</tr>
<tr>
<td>Total</td>
<td>79,428 kg</td>
</tr>
</tbody>
</table>

* Wet mass; does not include EDL System
† Packaging not currently considered

<table>
<thead>
<tr>
<th>DAV Mass (w/O₂ ISRU)</th>
<th>Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascent Stg 2</td>
<td>9,330 kg (CH₄)</td>
</tr>
<tr>
<td>Ascent Stg 1</td>
<td>12,156 kg (CH₄)</td>
</tr>
<tr>
<td>ISRU and Power†</td>
<td>11,280 kg</td>
</tr>
<tr>
<td>Descent stage*</td>
<td>21,297 kg</td>
</tr>
<tr>
<td>Total</td>
<td>54,062 kg</td>
</tr>
</tbody>
</table>

>25 MT savings (>30%)
Mars Collaborative Study
Purpose

- Evaluate Mars ISRU technology and system options for propellant production on Mars for a sample return mission
 - Oxygen from Mars atmosphere (carbon dioxide)
 - Oxygen and Fuel from Mars atmospheric carbon dioxide and water in soil
- Examine impact on scale to human mission needs on technology and system selection
 - Determine acceptable scale for risk reduction of human mission
 - Examine whether technologies can be scaled down to Mars 2020 precursor
- Examine state-of-the-art (SOA) of Mars ISRU technologies and potential development cost/risk
 - Look for synergism with fuel cell power, life support, and propulsion technology development and system applications
 - Look ahead to potential advancements in 5 to 10 years in SOA

Approach

- Decouple ISRU plant trade from mission by focusing on production rates
- Begin evaluation at major subsystem level
- Start with realistic schematics with components and sensor locations identified for major subsystems
 - Oxygen (O₂) Production from Atmosphere Resources
 - Oxygen/Methane (O₂/CH₄) Production from Atmosphere/Soil Resources
- Subsystem down-selection decisions effected by complete system performance
 - Need Power and Cryogenic Fluid System support to understand ‘system’ implications
 - Need to ensure decisions on interface temp/pressure is consistent at system level

G. Sanders, (281) 483-9066, gerald.b.sanders1@jsc.nasa.gov
Mars ISRU Trade Tree

Chemical Processing

Atmosphere Collection
- Dual Stage Mechanical Pump
- CO2 Freezer
- Dual-Stage Rapid-Cycle Adsorption

Dust Filtration
- Backflow Filter
- Electrostatic repulsion

O2 Production
- Solid Oxide CO2 Electrolysis
- RWGS
- Water Electrolysis

O2 & CH4 Production
- Sabatier Reactor with Water Electrolysis
- SOCE with Sabatier Plate
- CO2/H2O Electrochemical Unit

Without CO2 Separation

With CO2 Separation

Soil Processing
- Soil Type/Water Content
- Regolith Delivery
- Soil Dryer

Water Electrolysis
- Flat Plate
- Tubular
- Microchannel

Anode Feed
- Conventional

Cathode Feed
- Microchannel

Vapor Feed
- High Temperature

Mission Trades

2013 Studies
- Hydrated material
- Icy soil

FY13 Mars Collaborative Study Planning
- Excavator w/ Stationary Soil Processor
- Mobile Excavator/Processor

Heating Method
- Convective (Hot Gas)
- Conductive
- Microwave/IR/RF

Operation Mode
- Batch
- Continuous
- Vertical
- Combo Drill/Dryer

Dryer Design
- Tray
Mars Collaborative ISRU Study Results (1)

ISRU Process

<table>
<thead>
<tr>
<th>ISRU Process</th>
<th>0.15 kg/hr</th>
<th>0.35 kg/hr</th>
<th>0.75 kg/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg</td>
<td>W</td>
<td>kg</td>
</tr>
<tr>
<td>Solid Oxide CO$_2$ Electrolysis</td>
<td>55</td>
<td>1444</td>
<td>126</td>
</tr>
<tr>
<td>Reverse Water Gas Shift w/Water Electrolysis</td>
<td>57</td>
<td>1328</td>
<td>101</td>
</tr>
<tr>
<td>Solid Oxide CO$_2$/H$_2$O Electrolysis w/Sabatier & Mars Soil</td>
<td>56</td>
<td>1631</td>
<td>90</td>
</tr>
<tr>
<td>Sabatier w/Water Electrolysis & Mars Soil</td>
<td>64</td>
<td>1744</td>
<td>95</td>
</tr>
</tbody>
</table>

Note:
1. Mass of rover for soil excavation is not shown since it uses the sample fetch rover once the samples have been collected.
2. Liquefaction mass and power not included since they will be similar for all options with the same production rate.

ISRU Subsystem/System Attributes

<table>
<thead>
<tr>
<th>ISRU Subsystem/System Attributes</th>
<th>CO$_2$ Freezer</th>
<th>Rapid Cycle Adsorption Pump</th>
<th>SOE</th>
<th>RWGS/WE</th>
<th>Sabatier/WE</th>
<th>SOE w Sabatier</th>
<th>Sabatier/WE; Soil Processing</th>
<th>SOE w Sabatier; Soil Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>G</td>
<td>M</td>
<td>G</td>
<td>P</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>P</td>
</tr>
<tr>
<td>Number of active components</td>
<td>6</td>
<td>15</td>
<td>8</td>
<td>20</td>
<td>11</td>
<td>10</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>Rapid Startup/Shutdown</td>
<td>M</td>
<td>G</td>
<td>P</td>
<td>G</td>
<td>G</td>
<td>P</td>
<td>G</td>
<td>P</td>
</tr>
<tr>
<td>Commonality with Life Support</td>
<td>M</td>
<td>G</td>
<td>P</td>
<td>M</td>
<td>G</td>
<td>M</td>
<td>G</td>
<td>M</td>
</tr>
<tr>
<td>Commonality with Fuel Cell Power</td>
<td>G</td>
<td>M</td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rankings are relative: G=Good, P = Poor, M = Medium
Mars Collaborative ISRU Study Results (2)

- **Mars Atmosphere CO\(_2\) Collection**
 - Microchannel Rapid-Cycle CO\(_2\) Collection technology preferred over CO\(_2\) Freezer
 - CO\(_2\) Freezer more likely scalable down to Mars 2020 mission

- **O\(_2\) Production from Mars Atmosphere**
 - Both Solid Oxide CO\(_2\) Electrolysis (SOCE) and Microchannel Reverse Water Gas Shift with Water Electrolysis (RWGS/WE) have comparable mass and power
 - SOCE is slightly lighter and simpler but may be more risky. Less synergistic with life support but more synergistic with solid oxide fuel cell; Best packaging for Mars 2020 ISRU demonstration
 - All microchannel design (CO\(_2\) collection, RWGS reactor, water vapor separation) may be best for packaging and scalability to human mission; Also not as effected by day/night operation cycle from solar power.

- **O\(_2\) and CH\(_4\) Production from Mars Atmosphere and Soil**
 - Both Solid Oxide CO\(_2\) Electrolysis (SOCE) with Sabatier and Microchannel Sabatier with Water Electrolysis have comparable mass and power
 - Mars soil excavator or processor appears to be able to fit on sample cache rover; power system will need to be supplemented
 - Similar pros/cons for SOCE vs microchannel as O\(_2\) Production only
 - Ionic liquid concept shows tremendous promise but is still too low in TRL to select

- **Key Findings on ISRU Concept Discriminators**
 - When considering only mass and power of the ISRU system concept, atmosphere only vs atmosphere/soil are comparable to each other
 - Advanced technologies such as microchannel reactors, heat exchangers, water/gas separators, and carbon dioxide adsorption pumps provide significant mass/volume improvement over conventional technologies as production rates increase
 - Oxygen only production from the Mars atmosphere is less synergistic with life support systems than oxygen/fuel production since these ISRU processes produce carbon monoxide
Mars ISRU Demo Payload for Supersonic Retro Propulsion (SRP) Mission
Mars ISRU Demo Payload for Supersonic Retro Propulsion (SRP) Mission

- **Assumptions for ISRU payload definition:**
 - Mass of (TBR) 2MT maximum
 - Deck height for payload ~ 1 meter height above surface; horizontal landing
 - CG roughly centered (soft requirement)
 - Cylindrical payload volume: 2 m dia. X 4 m long

- **ISRU payload study purpose:**
 a. Determine highest production rate/scale possible within payload mass/volume limits
 - Define maximum amount of power to ISRU payload – use solar arrays
 - Define/utilize remaining payload for ISRU and storage.
 b. Provide 3-D packaging concept for atmosphere processing and soil processing demonstrations
 c. Determine payload applicability to human scale mission

- **ISRU Demo Payload Options:**
 - Atmosphere processing for oxygen (O₂) production alone with O₂ storage
 - Soil processing for water (H₂O) with O₂ storage
 - Combined Atmosphere/Soil Processing for O₂ and Methane (CH₄) production and storage
ISRU Demo mass, power, and volume are first order estimates
- All items required for successful operation included in payload. No sharing of SRP subsystems/hardware
- Technologies & processes were selected to bound the wide scope of possible process configurations.
- No day/night operation (startup/shutdown impacts) or power impacts analyzed. Just assumed constant production rate for 8 hours per Mars day (sol).
- Components requiring heat rejection were identified for start of thermal management/packaging
- Packaging based on subsystem connectivity
 - Center of Gravity (c.g) management not considered in ISRU demo packaging at this time.

Notional landing location/latitude and time of year selected that was not based on an actual mission concept (not available)
- 15 deg. north latitude selected. Considered reasonable location for landing (low MOLA)
- Landing at Ls 180 maximizes solar power generation capability at landing location; assume landing 50 days prior for 100 day mission

Power/packaging evaluation performed for notional landing location
- Packaging of 5.5 to 6 m diameter array possible based on notional payload bay and use of ATK UltraFlex solar array design parameters
- Equates to rough estimate of 6.5 to 7.5 KWe power generation possible
 - Assumed 6.5 KWe for 8 hours per sol as reasonably conservative estimate
Mars ISRU Demo SRP Payload Study Options

- **Mars Atmosphere Processing (O₂ only)**
 - Electrostatic precipitator w/ regenerative HEPA filter
 - CO₂ collection (freezing)
 - CO₂ processing: Solid Oxide Electrolysis
 - CO/CO₂ separation and recycling to increase performance
 - O₂ liquefaction
 - O₂ storage (100 days)

- **Mars Atm/Soil Processing (O₂/CH₄)**
 - Electrostatic precipitator w/ regenerative HEPA filter
 - CO₂ collection (freezing)
 - CO₂ processing: Sabatier Reactor
 - Rover/Excavation
 - Soil processing reactor (up to 450 C)
 - Water separation/cleanup module
 - Water electrolysis (Cathode Feed PEM)
 - O₂ & CH₄ product dryer
 - O₂ & CH₄ liquefaction & Storage (reduced)
Mars ISRU Demo SRP Payload Study Results

Mars Atm ISRU Demo

<table>
<thead>
<tr>
<th>Component</th>
<th>Mass (kg)</th>
<th>Power (KW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂ Production rate</td>
<td>0.45 kg/hr</td>
<td></td>
</tr>
<tr>
<td>Filtration</td>
<td>1.23</td>
<td>0.00025</td>
</tr>
<tr>
<td>CO₂ Collection/Freezer</td>
<td>173</td>
<td>2.23</td>
</tr>
<tr>
<td>SOE Processor</td>
<td>5.6</td>
<td>3.7</td>
</tr>
<tr>
<td>SOE Recirculation system</td>
<td>34.6</td>
<td>0.187</td>
</tr>
<tr>
<td>O₂ Liquefaction and Storage</td>
<td>70</td>
<td>0.6</td>
</tr>
<tr>
<td>Secondary Structure (15%)</td>
<td>42.7</td>
<td></td>
</tr>
<tr>
<td>Solar Arrays (2)</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Power conditioning/batteries*</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Thermal Management/Radiators</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Total</td>
<td>372.1</td>
<td>6.72</td>
</tr>
</tbody>
</table>

Mars Soil ISRU Demo

<table>
<thead>
<tr>
<th>Component</th>
<th>Mass (kg)</th>
<th>Power (KW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂ Production rate</td>
<td>0.48 kg/hr</td>
<td></td>
</tr>
<tr>
<td>Rover Excavator**</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Soil Processor & Water Cleanup</td>
<td>193</td>
<td>3.1</td>
</tr>
<tr>
<td>Water Electrolysis (2)</td>
<td>40</td>
<td>2.8</td>
</tr>
<tr>
<td>O₂ Dryer</td>
<td>4.1</td>
<td>0.064</td>
</tr>
<tr>
<td>O₂ Liquefaction and Storage</td>
<td>72</td>
<td>0.7</td>
</tr>
<tr>
<td>Secondary Structure (15%)</td>
<td>71.9</td>
<td></td>
</tr>
<tr>
<td>Solar Arrays (2)</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Power conditioning/batteries*</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Thermal Management/Radiators</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Total</td>
<td>596.0</td>
<td>6.66</td>
</tr>
</tbody>
</table>

Combined Atm/Soil ISRU Demo

<table>
<thead>
<tr>
<th>Component</th>
<th>Mass (kg)</th>
<th>Power (KW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂ Production rate</td>
<td>0.48 kg/hr</td>
<td></td>
</tr>
<tr>
<td>Filtration</td>
<td>1.3</td>
<td>0.00025</td>
</tr>
<tr>
<td>CO₂ Collection/Freezer</td>
<td>43</td>
<td>0.574</td>
</tr>
<tr>
<td>Sabatier Microchannel Reactor</td>
<td>1</td>
<td>0.082</td>
</tr>
<tr>
<td>Rover Excavator**</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Soil Processor & Water Separation</td>
<td>193</td>
<td>1.7</td>
</tr>
<tr>
<td>Water Capture/Temp Storage</td>
<td>3.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Water Electrolysis (2)</td>
<td>40</td>
<td>2.8</td>
</tr>
<tr>
<td>O₂ and CH₄ Dryers</td>
<td>5</td>
<td>0.098</td>
</tr>
<tr>
<td>O₂ Liquefaction and Storage</td>
<td>72</td>
<td>0.7</td>
</tr>
<tr>
<td>CH₄ Liquefaction and Storage</td>
<td>58</td>
<td>0.42</td>
</tr>
<tr>
<td>Secondary Structure (15%)</td>
<td>88.1</td>
<td></td>
</tr>
<tr>
<td>Solar Arrays (2)</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Power conditioning/batteries*</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Thermal Management/Radiators</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Total</td>
<td>720.1</td>
<td>6.9</td>
</tr>
</tbody>
</table>

CH₄: 0.12 kg/hr

Rover oversized for mission

ISRU Plant Only

<table>
<thead>
<tr>
<th>Component</th>
<th>Atm</th>
<th>Soil</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (kg)</td>
<td>246.59</td>
<td>272.67</td>
<td>330.05</td>
</tr>
<tr>
<td>Power (KW)</td>
<td>6.12</td>
<td>5.96</td>
<td>5.75</td>
</tr>
</tbody>
</table>

Human mission would include 3 units (each slightly scaled up)

*Mass and power available for batteries

**Rover not optimized for soil excavation or production rate

G. Sanders, (281) 483-9066, gerald.b.sanders1@jsc.nasa.gov
Water/Volatiles Released from Mars Soil
(SAM instrument: Rocknest sample)

Region 1: <300 C
- 40-50% of the water released
- Minimal release of HCl or H₂S

Region 2: <450 C
- >80% of the water released
- CO₂ and O₂ released from decomposition of perchlorates and oxidation of organic material
- Some release of HCl or H₂S, but before significant amounts are released at higher temperatures

Predicted Volatile Release Based on Lab Experiments

CO₂ released by
1. Absorbed atmosphere <200C
2. Oxidation of organic material >200 C
3. Thermal decomposition of carbonates >450 C

O₂ released by
1. Dehydroxylation of clays <350 C
2. Decomposition of non-metal and metal oxides >500 C

CH₃Cl and CH₂Cl₂ released by
1. Decomposition of Mg(ClO₄)₂ perchlorate >200C
Mars ISRU State of the Art
Mars ISRU Propellant Production

Needs

- **Propellant production for human mission ascent (Mars DRA 5.0)**
 - For O_2 only: 2.2 to 3.5 kg/hr O_2; 480 days or 300 days
 - For O_2/CH_4:
 - 0.55 to 0.88 kg/hr CH_4
 - 1.2 to 2.0 kg/hr H_2O; (41 to 66 kg/hr soil @ 3% H_2O by mass)

- **Propellant production for Mars Sample Return**
 - 0.35 to 0.5 kg/hr O_2; 420 to 500 days (multiple studies)
 - 0.75 to 1.5 kg/hr O_2; 35 or 137 days (Mars Collaborative Study 4-2012)

- **Propellant production for Mars ISRU Demo**
 - 0.02 kg/hr O_2; 50 operations (Mars 2020 AO requirement)
 - 0.00004 kg/hr O_2; 10 operations (MIP demo on Mars 2001 Surveyor)

Demonstrated

- **Mars ISRU Testbeds (late ’90s early ‘00s):**
 - LMA/JSC Sabatier/Water Electrolysis: 0.02 kg/hr O_2; 0.01 kg/hr CH_4
 - KSC RWGS/Water Electrolysis: 0.087 kg/hr O_2
 - Pioneer Astronautics (SWE & RWGS): 0.02 kg/hr O_2; 0.01 kg/hr CH_4
 - (IMISPPS): 0.031 kg/hr O_2, 0.0088 kg/hr CH_4

- **Atmosphere Processing:** **MARCO POLO** (Individual subsystems)
 - CO_2 Collection: 0.088 kg/hr CO_2
 - CO_2 Processing: 0.066 kg/hr of O_2; 0.033 kg/hr of CH_4; 0.071 kg/hr of H_2O
 - Water Processing: 0.52 kg/hr H_2O; 0.46 kg/hr O_2

- **Soil Processing:**
 - Lunar H_2 Reduction - ROxygen Reactor: 5 to 10 kg/hr soil:
 - Lunar H_2 Reduction - PILOT Reactor: 4.5 to 6 kg/hr soil:
 - Mars Soil Auger - MISME: 0.18 to 0.2 kg/hr soil
 - Mars Soil Reactor-Pioneer Ast. Hot CO_2 4 kg/hr soil per batch

Large Gap between Needs and Demonstrated
Past/Recent Mars ISRU Technology Development

CO₂ Collection & Separation
- Mars atmosphere adsorption pump (JPL, ARC, LMA, JSC)
- Microchannel adsorption pump (PNNL, SBIR)
- Mars atmosphere solidification pump (LMA, SBIR, NASA)

CO₂ Processing
- CO₂ electrolysis & low pressure dissociation (NASA, Univ. of Arizona, Old Dominion, Industry, SBIRs)
- Reverse Water Gas Shift (KSC, PNNL, SBIRs)
- Sabatier reactors (NASA, Industry, SBIRs)
- Methane reformer (JPL, SBIRs)
- Hydrocarbon fuel reactors - methanol, toluene, ethylene, etc. (SBIRs)
- Microchannel reactors/heat exchangers (PNNL, SBIRs)

Water Processing
- Water electrolysis/decomposition (NASA, Industry, SBIRs)
- Water cleanup for lunar soil processing (KSC, SBIRs)
- Water vapor/gas cleanup for lunar soil processing (NASA, SBIRs)

Soil Processing
- H₂ Reduction of regolith reactors (NASA, LMA)
- Lunar volatile extraction (NASA, Industry)
- Mars soil processing (JSC, SBIRs)
Past/Recent Mars ISRU System Development

Mars Atmosphere Processing
- 1st Gen Sabatier/Water Electrolysis (SWE) breadboard under ambient & Mars environment testing (NASA, Lockheed Martin)
- 1st Generation Reverse Water Gas Shift with and w/o Fuel production (NASA, Pioneer Astronautics)
- 2nd Gen MARCO POLO atmosphere processing (JSC, KSC)

Lunar/Mars Soil Processing
- 1st Gen H₂ Reduction from Regolith Systems (NASA, LMA)
- 2nd Gen MARCO POLO soil processing system (JSC, KSC) – design only

G. Sanders, (281) 483-9066, gerald.b.sanders1@jsc.nasa.gov
Current ISRU Activities

SBIR Technologies
- Mars dust filtration
- CO₂ collection and pressurization
- CO₂ electrolysis
- Microchannel Sabatier reactors

Mars 2020 ISRU Demo
- Make 0.02 kg/hr O₂; <600 W-hrs; 50 sols of operation

Water/Volatile Characterization/Prospecting
- Resource Prospector Mission – RESOLVE payload

RESOLVE
- Measure H₂O . 0.5% wt. down to 1 m
- Measure: H₂, CO, NH₃, CH₄, H₂S
- Nom. Mission Life = 10+ Cores
- Mass = 100 kg
- Dimensions: 68.5 x 112 x 1200 cm
- Ave. Power: 200 W

Advanced Exploration Systems (AES)
- Trash to Supply Gas; Steam Reforming/O₂ Combustion
- Mars Architecture, Systems, & Technologies for Exploration & Resources (MASTER)
 - Demonstrate integration and operation of ISRU, Power, and Life Support systems around liquid oxygen and methane under different mission architectures
 - Proposed AES new start in FY15
Results/Conclusions

- **Using Mars atmosphere carbon dioxide (CO₂) alone is the lowest risk**
 - CO₂ is available everywhere on Mars and no ISRU hardware needs to be deployed
 - Multiple options exist to extract oxygen (O₂) from CO₂
 - Least amount of hardware and volume of all ISRU options

- **While lower in mass, carrying hydrogen (H₂) from Earth to make O₂/methane (CH₄) is volumetrically and technically difficult**
 - H₂ is <1/3 the mass but 3 times the volume compared to CH₄ brought from Earth

- **Using both Mars atm. CO₂ and water (H₂O) from the Mars soil is the lowest mass.**
 - Extra hardware for soil excavation and processing significantly less than mass of ascent fuel brought from Earth
 - Power needed for either approach is similar enough not to impact power system greatly
 - Mass benefit increases and power difference decreases with increase in water content in soil above 3% by mass.

- **Using both Mars atmosphere CO₂ and H₂O from the Mars soil provides the greatest architecture/mission benefits.**
 - 100% of O₂/fuel produced on Mars
 - Allows for Mars ascent, surface hoppers, and production of fuel cell reactants for surface mobility
 - Water can be used for life support, plant growth, and radiation shielding
 - Processes and technologies are similar to lunar water/O₂ extraction from regolith and NEA mining.
 - Proving Ground activities on lunar surface, NEAs, and Phobos will reduce risk
Backup
How Propellant Production Enables Future Moon & Mars Missions

Every 1 kg of propellant made on Mars saves 7.5 to 11.3 kg in LEO

- 25,000 kg mass savings from propellant production on Mars for ascent = 187,500 to 282,500 kg launched into LEO

1 kg propellant on Mars

- 1.9 kg used for EDL
- 2.9 kg prior to Mars EDL
- 8.4 kg used for TMI propulsion

11.3 kg in LEO

Estimates based on Aerocapture at Mars

A Kilogram of Mass Delivered Here… …Adds This Much Initial Architecture Mass in LEO …Adds This Much To the Launch Pad Mass

<table>
<thead>
<tr>
<th>Ground to LEO</th>
<th>-</th>
<th>20.4 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEO to Lunar Orbit (#1→#2)</td>
<td>4.3 kg</td>
<td>87.7 kg</td>
</tr>
<tr>
<td>LEO to Lunar Surface (#1→#3; e.g., Descent Stage)</td>
<td>7.5 kg</td>
<td>153 kg</td>
</tr>
<tr>
<td>LEO to Lunar Orbit to Earth Surface (#1→#4→#5; e.g., Orion Crew Module)</td>
<td>9.0 kg</td>
<td>183.6 kg</td>
</tr>
<tr>
<td>Lunar Surface to Earth Surface (#3→#5; e.g., Lunar Sample)</td>
<td>12.0 kg</td>
<td>244.8 kg</td>
</tr>
<tr>
<td>LEO to Lunar Surface to Lunar Orbit (#1→#3→#4; e.g., Ascent Stage)</td>
<td>14.7 kg</td>
<td>300 kg</td>
</tr>
<tr>
<td>LEO to Lunar Surface to Earth Surface (#1→#3→#5; e.g., Crew)</td>
<td>19.4 kg</td>
<td>395.8 kg</td>
</tr>
</tbody>
</table>

G. Sanders, (281) 483-9066, gerald.b.sanders1@jsc.nasa.gov
Why Methane Fuel?

- **Simplicity of ISRU Processing**
 - Single step process for methane.
 - Two or more steps for most other hydrocarbon fuels
 - High processes conversion:
 - >99% methane product from CO₂ in single pass (recycle H₂)
 - Other fuels (such as Fischer Tropsch) have wide band of hydrocarbons produced; must separate and recycle (increase complexity), or accept (decrease in engine performance)

- **Higher propulsion efficiency**
 - **Pros:** Higher Isp than most other hydrocarbons
 - High ox/fuel (O/F) mixture ratio. (Max. benefit for O₂ only ISRU)
 - Clean burning; no coking
 - **Cons:** Methane is lower density than other hydrocarbons
 - High H-to-C ratio (Min. benefit for Earth provided H₂ ISRU options)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Isp</td>
<td>328</td>
<td>365</td>
<td>362</td>
<td>357</td>
<td>335</td>
<td>340</td>
<td>364</td>
<td>352</td>
<td>441</td>
<td>454</td>
</tr>
<tr>
<td>MR</td>
<td>1.9</td>
<td>1.0</td>
<td>3.5</td>
<td>3.25</td>
<td>1.5</td>
<td>2</td>
<td>2.75</td>
<td>3.0</td>
<td>5.25</td>
<td>6.0</td>
</tr>
<tr>
<td>Fuel Density (kg/m³)</td>
<td>880</td>
<td>1020</td>
<td>422</td>
<td>500-580</td>
<td>792</td>
<td>789</td>
<td>568</td>
<td>810</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>Fuel B.P (K)</td>
<td>360</td>
<td>387</td>
<td>111.7</td>
<td>230.9</td>
<td>337.8</td>
<td>351.5</td>
<td>169.5</td>
<td>20.3</td>
<td>20.3</td>
<td>20.3</td>
</tr>
</tbody>
</table>

Based on Chamber Pressure (Pc) = 500 psi; Area Ratio (AR)=150:1; Efficiency = 93%

- **Higher compatibility with liquid oxygen**
 - Same technology, insulation, cryocoolers, and tanks used for CH₄ as with LO₂
 - Thermal compatibility of lines and engine/thruster thermal management

Overall, choice of methane fuel is an overall balance of performance, storage, compatibility, and production