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DEALING WITH UNCERTAINTIES IN INITIAL ORBIT
DETERMINATION

Roberto Armellin∗, Pierluigi Di Lizia†, and Renato Zanetti‡

A method to deal with uncertainties in initial orbit determination (IOD) is pre-
sented. This is based on the use of Taylor differential algebra (DA) to nonlinearly
map the observation uncertainties from the observation space to the state space.
When a minimum set of observations is available DA is used to expand the solu-
tion of the IOD problem in Taylor series with respect to measurement errors. When
more observations are available high order inversion tools are exploited to obtain
full state pseudo-observations at a common epoch. The mean and covariance of
these pseudo-observations are nonlinearly computed by evaluating the expectation
of high order Taylor polynomials. Finally, a linear scheme is employed to update
the current knowledge of the orbit. Angles-only observations are considered and
simplified Keplerian dynamics adopted to ease the explanation. Three test cases of
orbit determination of artificial satellites in different orbital regimes are presented
to discuss the feature and performances of the proposed methodology.

INTRODUCTION

Orbit determination is typically divided into two phases. When the number of observation is
equal to the number of unknowns a nonlinear system of equations need to be solved. This problem
is known as initial (or preliminary) orbit determination (IOD). When more observations are available
accurate orbit determination can be performed. IOD typically delivers a single solution (or a limited
number of solutions) that exactly produces the available observations. In addition, in IOD simplified
dynamical models are often used (e.g. Keplerian motion) and measurement errors are not taken
into account (the problem is deterministic). When more observations are available the approach
becomes stochastic, because the additional observations include noise. This problem is usually set
as an optimization one, in which the (optimal) solution is the one that minimizes the observation
residuals. The solution is obtained via batch estimation, e.g. weighted nonlinear least squares, or a
sequential estimation, e.g. extended Kalman Filtering.1

In this paper we focus our attention on the orbit determination of resident space objects (RSO)
observed on a single passage with optical sensors. Thus, the problem is the one of an angles-
only orbit determination. In order to determine the orbit an IOD problem is solved followed by a
procedure to update the initial solution based on the additional observations.

Angles-only IOD an old problem. Gauss’2 and Laplace’s3 methods are commonly used to de-
termine a Keplerian orbit that fits with three astrometric observations. These methods have been
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revisited and analyzed by a large number of authors (e.g. 4, 5, 6) and new ones introduced more
recently. The Double r-iteration technique of Escobal7 and the approach of Gooding8 are two ex-
amples of angles-only methods introduced for the IOD of RSO.

In 2012 Armellin at al.9 proposed a IOD solver based on the solution of a Lambert’s problem
(between the second and the third observations) and a Kepler’s problem between the first and second
observation. The method iterates on the slant ranges at the second and third observations in order to
drive to zero the observational defects at the first observation. The iterations were carried out with
a high-order extension of Newton’s method enabled by differential algebra (DA). In addition, high
order Taylor expansions were exploited to nonlinearly map the uncertainties from the observation
space to the state space.

In this work a modified version of the method is proposed, in which all the three slant ranges
are the problem unknowns. The approach is based on the solution of two Lambert’s problems and
using the continuity of the velocity vector at the central observation as constraint. The method
has no restrictions on the geometry of the observations and it can deal with both short and long
gaps. As in the previous work the solution is obtained with a high-order Newton’s iteration scheme
enabled by DA. This approach allows the algorithm to both convergence in few iterations and map
uncertainties form the observation space to the state space. Thus, already the initial orbit is provided
with statistical information.

When multiple observations on the same passage are available the IOD solution is updated. In-
stead of adopting a classical least squares approach (which employs the linearization of the dynam-
ics and of the measurement functions10) high order inversion tools available in DA are exploited to
nonlinearly map group of observations to the state space at a common epoch, thus producing full
state pseudo-observations. The mean and covariance of these pseudo-observations are nonlinearly
computed by evaluating the expectation of the related high order Taylor polynomials. Finally, a lin-
ear updating scheme is utilized to update the current knowledge of the state mean and covariance.

The paper is organized as follows. A brief introduction on the DA tools used for the implemen-
tation of the algorithm is given first. This covers the methods to expansion the solution of ordinary
differential equations (ODE), compute the expansion of the solution of implicit parametric equa-
tions, and the algorithm to map statistics through nonlinear transformations. The following sections
describes the main algorithms developed in this work, i.e. the angles-only IOD solver and the up-
dating scheme. Simulated observational scenarios for a Geosynchronous Transfer Orbit (GTO), a
Geosynchronous Orbit (GEO) and a Molniya are used to analyzed the performances of the imple-
mented methods. Some final remarks conclude the paper.

DIFFERENTIAL ALGEBRA TOOLS

DA supplies the tools to compute the derivatives of functions within a computer environment.11

More specifically, by substituting the classical implementation of real algebra with the implemen-
tation of a new algebra of Taylor polynomials, any function f of v variables is expanded into its
Taylor polynomial up to an arbitrary order n with limited computational effort. In addition to basic
algebraic operations, operations for differentiation and integration can be easily introduced in the
algebra, thusly finalizing the definition of the differential algebra structure of DA.12, 13 Similarly to
algorithms for floating point arithmetic, also in DA various algorithms were introduced, including
methods to perform composition of functions, to invert them, to solve nonlinear systems explicitly,
and to treat common elementary functions.14 The differential algebra used for the computations in
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this work was implemented in the software COSY INFINITY.15 The reader may refer to Di Lizia et
al.16 for the DA notation adopted throughout the paper.

High-order expansion of the solution of ODE

An important application of DA is the automatic high order expansion of the solution of an ODE
in terms of the initial conditions.14, 16 This can be achieved by replacing the operations in a classical
numerical integration scheme, including evaluation of the right hand side, by the corresponding
DA operations. This way, starting from the DA representation of an initial condition x0, DA ODE
integration allows the propagation of the Taylor expansion of the flow in x0 forward in time, up to
any final time tf . Any explicit ODE integration scheme can be rewritten as a DA integration scheme
in a straight-forward way. For the numerical integrations presented in this paper, a DA version of a
7/8 Dormand-Prince (8-th order solution for propagation, 7-th order solution for step size control)
Runge-Kutta scheme is used. The main advantage of the DA-based approach is that there is no need
to write and integrate variational equations in order to obtain high order expansions of the flow. It is
therefore independent of the particular right hand side of the ODE and the method is quite efficient
in terms of computational cost.

Expansion of the solution of parametric implicit equations

Well-established numerical techniques (e.g., Newton’s method) exist, which can effectively iden-
tify the solution of a classical implicit equation

f(x) = 0 (1)

with f : <n → <n. Suppose an explicit dependence on a vector of parameters p can be highlighted
in the previous vector function f , which leads to the parametric implicit equation

f(x,p) = 0. (2)

Suppose the previous equation is to be solved, whose solution is represented by the function x(p)
returning the value of x solving (2) for any value of p. Thus, the dependence of the solution of the
implicit equation on p is of interest. DA techniques can effectively handle the previous problem
by identifying the function x(p) in terms of its Taylor expansion with respect to p. This result is
achieved by applying partial inversion techniques as detailed in 16.

The final result is
[x] = x+Mx(δp), (3)

which is the k-th order Taylor expansion of the solution of the implicit equation. For every value
of δp, the approximate solution of f(x,p) = 0 can be easily computed by evaluating the Taylor
polynomial (3). Apparently, the solution obtained by means of Map (3) is a Taylor approximation
of the exact solution of Eq. (2). The accuracy of the approximation depends on both the order of the
Taylor expansion and the displacement δp from the reference value of the parameter.

Nonlinear mapping of the estimate statistics

Consider random variable x ∈ <n with probability density function p(x) and a second random
variable y ∈ <m related to x through the nonlinear transformation

y = f(x). (4)
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The problem is to calculate a consistent estimate of the main cumulants of the transformed probabil-
ity density function p(y). Since f is a generic nonlinear function this formulation includes a wide
range of problems involving uncertainty propagation (uncertainty propagation through nonlinear
dynamics, uncertainty propagation through nonlinear coordinate transformations, etc.).

The Taylor expansion of y with respect to deviations δx can be obtained automatically by initial-
izing the independent variable as a DA variable and evaluating (4) in DA framework. This procedure
delivers

[y] = f([x]) = y +My(δx) =
∑

p1+···+pn≤k
cp1...pn · δxp11 · · · δxpnn , (5)

where in this expression y is the zeroth order term of the expansion map, and cp1...pn are the Taylor
coefficients of the resulting Taylor polynomial

cp1...pn =
1

p1! · · · pn!
· ∂

p1+···+pnf

∂xp11 · · · ∂xpnn
. (6)

The evaluation of (5) for a selected value of δx supplies the k-th order Taylor approximation of y
corresponding to the displaced independent variable. Of course, the accuracy of the expansion map
is function of the expansion order and can be controlled by tuning it.

The Taylor series in the form (5) can be used to efficiently compute the propagated statistics.17, 18

The method consists in analytically describing the statistics of the solution by computing the l-th
moment of the transformed pdf using a proper form of the l-th power of the solution Map (5).

For a generic scalar random variable x with pdf p(x) the first four moments can be written as

µ = E{x}
P = E{(x− µ)2}
γ =

E{(x− µ)3}
σ3

κ =
E{(x− µ)4}

σ4
− 3,

(7)

where µ is the mean value, P is the covariance, γ and κ are the skewness and the kurtosis, respec-
tively,19 and the expectation value of x is defined as

E{x} =

∫ +∞

−∞
xp(x)dx. (8)

The moments of the transformed pdf in (4) can be computed by applying the multivariate form
of Eq. (7) to the Taylor expansion (5). The result for the first two moments becomes

µyi = E{[yi]} =
∑

p1+···+pn≤k
ci,p1...pnE{δxp11 · · · δxpnn }

P yiyj = E{([yi]− µi)([yj ]− µj)} =
∑

p1+···+pn≤k,
q1+···+qn≤k

ci,p1...pncj,q1...qnE{δxp1+q1
1 · · · δxpn+qn

n },

(9)
where ci,p1...pn are the Taylor coefficients of the Taylor polynomial describing the i-th component
of [y]. Note that in the covariance matrix formula the coefficients ci,p1...pn and cj,q1...qn are updated
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to include the subtraction of the mean. The coefficients of the higher order moments are computed
by implementing the required operations (e.g. ([yi]−µi)([yj ]−µj) for the second order moment)
on Taylor polynomials in the DA framework. The expectation values on the right side of Eq. (9)
are function of p(x). It follows that if the initial distribution is known, all of the moments of the
transformed pdf p(y) can be calculated. The number of monomials for which it is necessary to
compute the expectation increases with the order of the Taylor expansion and, of course, with the
order of the moment we want to compute. Note that, at this time, no hypothesis on the initial pdf has
been made. Thus, the method can be applied independently of the considered variable distribution.

We now consider the case in which x is a Gaussian random variable (GRV), x ∼ N (µ,P ),
in which µ is the mean vector and P the covariance matrix. An important property of Gaussian
distributions is that the statistics of a GRV can be completely described by the first two moments. In
case of zero mean, the expression for computing higher-order moments in terms of the covariance
matrix is due to Isserlis.20 In physics literature, Isserlis’s formula is known as the Wick’s formula.

Let s1 to sn be nonnegative integers, and s = s1 + s2 + · · · + sn. Then the Wick’s formula
suggests that

E{xs11 x
s2
2 . . . xsnn } =

{
0, if s is odd
Haf(P ), if s is even

(10)

where Haf(P ) is the hafnian of P = (σij), which is defined as

Haf(P ) =
∑
p∈

∏
s

s
2∏
i=1

σp2i−1,p2i , (11)

and
∏
s is the set of all permutations p of {1, 2, . . . , s} satisfying the property p1 < p3 < p5 <

. . . < ps−1 and p1 < p2, p3 < p4, . . . , ps−1 < ps.21

We observe that the expectation value terms of Eq. (9) can be computed using Eq. (10), and the
resulting moments can be used to describe the transformed pdf.

DA-BASED ANGLES-ONLY IOD

In the classical angles-only IOD problem three optical observations at epoch ti, with i = 1, . . . , 3
are available. The observations consist in three couples of right ascension and declination angles,
(αi, δi). These observations provide us with three inertial light of sights ρ̂i, i.e. the unit vectors
pointing from the observer (on the Earth’s surface) to the observed object.

Assume to have first guess values of the slant ranges ρi or equivalently for the orbit radii ri (e.g.
from the solution Gauss’ 8-th degree polynomial). We present a high order iterative procedure with
the following objectives: a) refine the values of ρi assuming Keplerian dynamics, and b) express the
functional dependence of the solution of the IOD problem with respect to observation uncertainties
in terms of a high-order Taylor polynomials.

We start by initializing the observations as DA variables:

[α] = α+ δα
[δ] = δ + δδ,

(12)

in which we have grouped the observations in two homogeneous vectors, α = (α1, α2, α3) and
δ = (δ1, δ2, δ3), and δα and δδ accounts for measurement uncertainties. The line of sight vectors
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at t1, t2 and t3 become
[ρ̂1] = ρ̂1 +Mρ̂1(δα1, δδ1)

[ρ̂2] = ρ̂2 +Mρ̂2(δα2, δδ2)

[ρ̂3] = ρ̂3 +Mρ̂3(δα3, δδ3),

(13)

whereMρ̂i is an arbitrary order Taylor polynomial that describes the effect of an observation un-
certainty on the line of sight.

Similarly, we initialize DA variables on the topocentric distances at t1, t2 and t3

[ρ1]1
−

= ρ1−
1 + δρ1

[ρ2]1
−

= ρ1−
2 + δρ2

[ρ3]1
−

= ρ1−
3 + δρ3,

(14)

or in more compact form
[ρ]1

−
= ρ1− + δρ, (15)

where the superscript 1− indicates the first step of the iterative procedure, and ρ1−
1 , ρ1−

2 , and ρ1−
3

are the guess values for the slant ranges.

The spacecraft position vectors can be written (by summing the known observer’s locations) as

[r1] = r1 +Mr1(δα1, δδ1, δρ1)
[r2] = r2 +Mr2(δα2, δδ2, δρ2)
[r3] = r3 +Mr3(δα3, δδ3, δρ3).

(16)

A DA-based Lambert’s problem22 can be solved between with [r1] and [r2], and between [r2]
and [r3]. Using the DA-implementation of Lambert’s problem we obtain two Taylor polynomial
approximations for the velocity vector at t2

[v−2 ] = v−2 +Mv−2
(δα1, δδ1, δα2, δδ2, δρ1, δρ2)

[v+
2 ] = v+

2 +Mv+2
(δα2, δδ2, δα3, δδ3, δρ2, δρ3)

(17)

Note that the above expressions of the velocity vector are different for two reasons. First, the
starting values of the slant ranges are not the solution of the IOD problem; secondly, they have
different functional dependence on the observation angles. The goal is thus a) to find the values of
the slant ranges such that the velocity vector is continuos at the midpoint, i.e., we want to find the
exact values of ρ1, ρ2, and ρ3, and b) to approximate the spacecraft state at t2 as a Taylor polynomial
in the observation uncertainties. We start by defining the Taylor map of the defects

[∆ṽ2] = [v+
2 ]− [v+

2 ] = ∆ṽ2 +M∆ṽ2(δα, δδ, δρ). (18)

Note that for the exact values of ρ1, ρ2 and ρ3 the constant part of maps (18) would be zero. We
now need to find the variations δρ necessary to cancel out these constants and to express r2 and v2

as Taylor polynomials in δα and δδ only. The first step is to work with an origin preserving map

[∆v2] = [∆ṽ2]−∆ṽ2 =M∆v2(δα, δδ, δρ) (19)
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and to build an augmented Taylor polynomial by adding identities in observation deltas ∆v2

δα
δδ

 =

 M∆v2

Iα
Iδ

 δα
δδ
δρ

 . (20)

This polynomial map can be inverted using ad-hoc algorithms implemented in COSY-Infinity, yield-
ing  δα

δδ
δρ

 =

 M∆v2

Iα
Iδ

−1  ∆v2

δα
δδ

 . (21)

Extracting the three last lines we obtain

[
δρ
]

=
[
Mρ

]  ∆v2

δα
δδ

 . (22)

We now evaluate the map (22) in [∆v2] = −∆ṽ2, obtaining

[ρ]1
+

= ρ1+ +Mρ(δα, δδ) (23)

where the subscript 1+ indicates the Taylor polynomial of the corrections of the topocentric dis-
tances to be applied at the end of the first iteration. This last step is the high-order counterpart of
classical Newton’s method.

The second iteration starts with the Taylor polynomials of the topocentric distances given by

[ρ]2
−

= [ρ]1
−

+ [ρ]1
+

+ δρ = ρ2− +Mρ(δα, δδ, δρ) (24)

where now the explicit dependence on the entire set of observables appears. Thus, from the second
iteration, the Taylor polynomials (16)–(17) depend on all (δα, δδ, δρ). The iterative procedure
ends when the values of ∆ṽ2 are smaller than a prescribed tolerance. The Taylor polynomials of
the topocentric distances at the last iteration k are

[ρ] = [ρ]k
−

+ [ρ]k
+

= ρ+Mρ(δα, δδ) (25)

Using these expressions the spacecraft position and velocity vectors at t2 assume the form

[r2] = r2 +Mr2(δα, δδ)
[v2] = v2 +Mv2(δα, δδ).

(26)

or more compactly
[x2] = x2 +Mx2(δα, δδ), (27)

where x2 = (r2,v2).

As a result of the iterative procedure, r2 and v2 exactly satisfy (in the two-body model) the nom-
inal observation set (α, δ). Furthermore, for any displaced value of the observables, the solution of
the preliminary determination problem is computed by evaluating the polynomial (26) in the corre-
sponding values of (δα, δδ). Map (27) is an arbitrary order Taylor polynomial in δα and δδ, which
maps the uncertainties from the observable space to the spacecraft state phase. In particular, using
the approach described in Section “Nonlinear mapping of the estimate statistics” we can compute
the statistical moments of x, given the statistics of the measurements.
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DA-INVERSION IOD

When more than three optical observations are available the solution (reference state and associ-
ated statistics) of the IOD problem needs to be updated to include the additional information. This
is carried out through a high-order filtering technique based on nonlinear mapping of statistics and
linear update scheme, in which only the pdf of the measurements is constrained to be Gaussian.

The optimal linear estimate of a state x based on a measurement y is given by

x̂ = µx + P xyP
−1
yy(ỹ − µy) (28)

where µx is the state mean, P xy is the joint covariance of the state and the measurement, and
P yy is the covariance of the measurement. For a general non-linear measurement with additive
noise ỹ = h(x) + η, calculating µy and the covariance matrices requires full knowledge of the
distribution of the state. This requirement has two consequences: first it means that the state and
its uncertainty need to be propagated forward to the measurement time, and second that statistics
of the measurement need to be calculated through a nonlinear transformation of the current state.
In this work we propose addressing this issue in a different way. The state is always estimated at a
fixed epoch time, and the nonlinear map to transport it to any other epoch is calculated with the DA
framework. Instead of working with y as a function of x, a full pseudo-measurement of the state
is generated from y; the inverse of the non-linear map from the state to the measurement is readily
available from COSY-Infinity. The advantage of this approach is that only the distribution of the
measurement noise is assumed Gaussian while the distribution of the state is left unconstrained.

Consider a time span [t0, tf ] and let xk be the state variable at some time tk ∈ [t0, tf ]. Consider
also a set of N measurements ỹi given at times ti ∈ [t0, tf ] with i = 1, . . . , N . Given the current
estimate of the state x̂−k and the related error statistics, we can always define the estimated state
as a DA variable and compute the predicted measurement at ti in the DA framework. The relation
between state and measurement is a nonlinear map that accounts for the forward propagation of the
initial condition and the measurement function. Under proper conditions this relation can be inverted
to map the observation space at ti into the state space at tk. The main cumulants of the resulting
map can be computed as described in the previous section, with the assumption that the statistics
of the measurement errors is Gaussian. The computed mean and covariance are exploited to update
the knowledge of xk using a linear update scheme. This can be done for groups of measurements
for which the dimension of measurement vector yi is equal to the dimension of the state vector, and
the map is invertible.

The resulting method can be made recursive and summarized as follows. From the IOD algorithm
we start from an initial value of the state estimate and covariance, x̂−k = µ−xk

and P−xkxk
(in general

tk = t2, the epoch of the central observation in the IOD problem.) Define the current estimate at
time of interest tk as a DA variable; i.e.,

[xk] = x̂−k + δxk. (29)

and propagate it to time ti when a measurement becomes available. The result assumes the form of
the following high-order Taylor expansion map

[xi] = x̂i +Mxi(δxk). (30)

Note that the constant part of this map, i.e. x̂i, it is not the predicted mean at time ti due to the
nonlinearities of the dynamics (the relation x̂i = µxi

holds true only if the state transition matrix is
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δxk

δyi

x̂−
k x̂i +Mxi

(δxk)
x̂i

ŷi

ŷ i
+
My i

(δx
k
)

ŷi +Myi
(δxk)

(a) Direct maps representation

ỹi

x̂−
k

ŷi

ỹ i
− ŷ i

x̂
−
k
+
M z k

(δ
y i
)

µzk

z̃k

z̃k − µzk

(b) Inverse map representation

Figure 1: Sketch of the Taylor maps involved in the construction of the DA-base map inversion
nonlinear filter.

used). Then, use the measurement equation to compute

[yi] = h([xi]) = ŷi +Myi(δxk), (31)

where h represents the measurement function. Figure 1(a) can be used by the reader to better
understand the meaning of Maps (30)–(31).

The next step consists in defining an origin preserving map

δyi = [yi]− ŷi =Mδyi(δxk). (32)

This polynomial map can be inverted if two conditions are satisfied: the map must be square and all
the measurements must be independent. If these requirements are satisfied, we can invert Map (32)
using algorithms implemented in COSY-Infinity, obtaining

δxk =Mδxk
(δyi). (33)

We now substitute in Map (29) the expression of δxk from (33), yielding

[xk] = x̂−k +Mxk
(δyi). (34)

This map now represents the pseudo-measurement of state xk based on the observation ỹi, so it is
renamed as

[zk] = x̂−k +Mzk(δyi). (35)

By construction the constant part of Eq. (35) is equal to the state estimate at step k, i.e. x̂−k , but
its statistical moments are different to those of xk, due to the nonlinear contribution ofMzk(δyi)
(as highlighted in Fig. 1(b)). We can now apply Eq. (9) to Taylor expansion (35) to compute the
statistics of the random variable zk and, in particular, the first two moments µzk and P zkzk . The
computed mean can be treated as the “predicted measure” of the state at time tk, with measurement
error defined by P zkzk . Thus, we can update the initial estimate and error covariance, using the
least squares method. This can be done using the Kalman filter update equations that, applied to the
current problem, read

K =P−xkxk

(
P−xkxk

+ P zkzk
)−1

, (36)

x̂+
k =x̂−k +K

(
z̃k − µzk

)
, (37)

P+
xkxk

= (I −K)P−xkxk
(I −K)T +KP zkzkK

T , (38)
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where x̂+
k is the updated mean at time tk and P+

xkxk
the related updated covariance matrix. When

another measurement becomes available, we can define the state at time tk as a new DA variable,
centered in the new estimate x̂+

k , and iterate the process. Note that z̃k is the true state-measurement
at ti mapped to time tk, which is readily available by evaluating Map (35) for δyi = ỹi − ŷi.

We said that Map (32) must be square in order to be invertible. It follows that if the measurement
vector has smaller dimension than the state vector, after the first measurement is received we can not
proceed with the update, but we have to wait for additional measurements (i.e. in the optical case
three observations are needed). When the number of scalar measurements equals the dimension of
the state variable, we can define an augmented measurement vector that can be used to build Maps
(31) and (32).

Once the final estimate of the state at time tk is obtained, the statistics of the solution can be
computed at any time via propagation and DA-based expectation evaluation.

TEST CASES

The algorithms for IOD are run considering single-pass optical observations of three objects as
listed in Table 1.

Table 1: Test cases: orbital parameters

Test Case A B C

Orbit type GEO GTO Molniya
NORAD ID 26824 23238 40296

Epoch JED 2457163.2824 2457167.1008 2457165.0708
a km 42143.781 24628.972 26569.833
e – 0.000226 0.699849 0.723221
i deg 0.0356 3.962 62.794

Ω deg 26.278 315.676 344.538
ω deg 42.052 240.885 271.348
M deg 72.455 13.735 347.726

The observations are all simulated from Teide Observatory, Tenerife, Canary Islands, Spain (ob-
servation code 954). The simulation windows are summarized in Table 2. For all the cases 15
equally spaced optical observations are simulated within the observation window. The spacecraft is
considered observable when its elevation is above 10 deg, is in sunlight, and the Sun has an eleva-
tion lower than -7 deg. As a result, different observation gaps are considered, ranging from 522 s
for the GTO case to 2160 s for the GEO case. The GTO object is observed before the apogee for an
arc length of approximately 20.7 deg. The average separation between observations is 1.5 deg, with
maximum and minimum values of 1.9 and 1.3 deg, respectively. The Molniya object is observed
before the apogee on an arc length of 13.4 deg. In this case the mean, maximum, and minimum
observation separations are 1, 1.1, and 0.8 deg. Finally, for the GEO case the observed arc has a
length of 127.4 deg (with uniformly spaced observations).

For all the cases the central observations, i.e. observation ID 7, 8, and 9, are used for the IOD;
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thus, x̂8 = (r̂8, v̂8) and P−x8,x8
are the output of the IOD problem. The remaining observations are

used for the update of x̂8 and P−x8,x8
. Finally, pertaining to the accuracies, we consider Gaussian

measurement noises with standard deviation of 0.5 arcsec.

Table 2: Test cases: observation windows

Test Case Observation Window ∆t σα,δ
yr mo day0 dayf hr0 hrf hr arcsec

A 2015 MAY 22 23 21.000 05.400 0.600 0.5
B 2015 JUN 02 02 03.550 05.580 0.145 0.5
C 2015 MAY 22 22 20.600 23.400 0.200 0.5

All simulations are run on a MacBook Air with a 1.8 GHz Intel i5 CPU and 4 GB RAM.

DA-based angles-only IOD

The IOD algorithm is run 100 times for each of three test cases described in Tables 1 and 2.
The observation geometries are described in Figures 2(a), 2(c), and 2(e). For all the cases 6-th
order computations are carried out. The DA-based IOD algorithm converges in all cases in, on
average, three iterations (convergence is achieved when the euclidean norm of the velocity vector
discontinuity at the central observation is less than 1× 10−12 km/s). In all cases, the real solutions
of the Gauss’ 8-th degree polynomial are taken as first guesses for the unknown slant ranges.

The result of the DA-based IOD algorithm is the Taylor polynomial [x8] (see Eq. (27)) which
maps the observation uncertainties into uncertainties in the state space. This map is employed
to compute the starting state estimate x̂−8 and covariance P−x8x8

, evaluating the expectation of the
monomials by assuming Gaussian statistics for measurement noise. Figures 2(f), 2(d), and 2(f) show
the absolute value of the observation residuals associated to x̂−8 (normalized by the observations
standard deviation) at the different observation epochs and for all the 100 simulations. As expected
the residuals are minimal at the epochs of the IOD (i.e. ID 7, 8, and 9), whereas they steeply
increase far from the central observations. In addition, note that x̂−8 does not exactly satisfy the
IOD, as it is acually the constant part of the associated Taylor polynomial, [x8], that does it (with
an accuracy that depends on the threshold selected for algorithm convergence). The maximum
differences between the constant part of the map and the computed mean are given in the first two
columns of Table 3, where the contributions are split in position and velocity components. It is
apparent that the nonlinearities play a minor role for the test case A, and this is confirmed by the
fact that the residuals are minimal at observations 7, 8, and 9 for this test case (see Figure 2(f)).

In all the cases the estimated covariance P−x8x8
is stretched along the line of sight directions as

shown in the zoomed portions of Figures 2(a), 2(c), and 2(e). Higher nonlinearities affect test cases
B and C, for which the uncertainty set is much more stretched. To quantify this, the maximum of
the square root of the position and velocity eigenvalues (indicated with maxσr8 and maxσv8) are
reported in Table 3.
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(a) Test case A: geometry
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(b) Test case A: residuals

(c) Test case B: geometry
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(d) Test case B: residuals

(e) Test case C: geometry
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(f) Test case C: residuals

Figure 2: Observation geometry and residuals
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Table 3: IOD: uncertainty set description.

Test Case max ||r8 − r̂−8 || max ||v8 − v̂−8 || maxσr8 maxσv8
km m/s km m/s

A 0.045 0.003 26.528 1.976
B 7.579 0.349 340.993 14.611
C 22.435 1.312 573.765 30.675

DA-based inversion IOD

The results obtained by applying the updating scheme presented in Sec. “DA-inversion IOD” are
presented in this section. 100 simulations are run for each of test cases and all the computations are
carried out at order 6, as for the DA-based IOD.

As we are considering 15 equally spaced optical observations, the maximum number of iterations
(including the IOD using observations 7, 8, and 9) is 5. The updating scheme is stopped whenever
the maximum number of iteration is reached or when the variation in the estimated state gets bigger
than 5 times the maximum eigenvalues of the starting state covariance (this is considered as an
anomaly in the updating scheme).

For all the cases a set of 4 plots is presented. In the first one the difference between the current
state estimate and the true state (indicated as ||r̂8 − r∗8|| for position and ||v̂8 − v∗8|| for velocity) is
plotted as function of the iteration number. Mean, maximum and minimum values for the considered
100 simulations are shown with different markers. In the second figure the maximum (over the 100
simulations) of the maximum position and velocity eigenvalues of the estimated covariance matrix
are plotted as a function of the iteration number. Thus, the first two figures can be used to extract
informations on state accuracy estimation and size of the estimated final uncertainty set. The third
and fourth figures are about the observations residuals. More specifically, in the third figure the
evolution of the mean residuals with the iteration number is highlighted using markers in gray scale
(black markers for the last iteration); whereas in the fourth figure we plot the mean, maximum, and
minimum values of the residuals (absolute value) at the the fifth iteration only.

Figures 3, 4, and 5 show all a similar behaviour of the relevant quantities. The accuracy of the
estimation improves with iteration number, and the size of the estimated state covariance reduces
accordingly. The observation residuals decrease and become more homogeneous with the iteration
number. More accurate predictions are obtained for the Test Case A, thanks to both a longer ob-
served arc and lower eccentricity of the orbit. In this case all the 100 simulations reach the 5-th
iteration, with a mean final average estimation error of 0.164 km on position and 0.022 m/s on ve-
locity. These errors increase to 3.353 km and 0.439 m/s for Test Case B, and to 8.520 km and 1.481
m/s for the Test Case C. Note that the 96% of the simulations reach the fifth iteration for the for the
GTO case, and this number further reduces to 90% for the Molniya orbit.

Finally, in Figure 6 the results of 100 simulations using first order Taylor expansions are shown to
highlight the effect of nonlinearities. It can be noticed that for the GEO case (Figure 6(a) and 6(b))
the updating algorithm is still convergent (although the average estimation error doubles with respect
to 6-order expansion) as both the estimation errors and the residuals decrease with the iteration

13



1 2 3 4 5
10

−4

10
−2

10
0

10
2

10
4

Iteration #

||
r̂
8
−

r
∗ 8
||
[k
m
]

 

 

mean min max

1 2 3 4 5
10

−4

10
−2

10
0

10
2

10
4

Iteration #

||
v̂
8
−

v
∗ 8
||
[m

/
s]

 

 

mean min max

(a) Estimation error
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(b) Estimated covariance size
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(c) Observation residuals convergence
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(d) Final observation residuals

Figure 3: Test case A
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(a) Estimation error
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(b) Estimated covariance size
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(c) Observation residuals convergence
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(d) Final observation residuals

Figure 4: Test case B
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(a) Estimation error
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(b) Estimated covariance size
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(c) Observation residuals convergence
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(d) Final observation residuals

Figure 5: Test case C
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number. This is not the case for both Test Case B and C, where the estimation errors and residuals
decrease only up to the third iteration (i.e. when nine optical observations are used). Thus, in
these cases a linear approximation is not sufficiently accurate in mapping, to the central epoch, the
observations taken at the boundary of the visibility windows.

CONCLUSIONS

In this paper the problem of dealing with observation uncertainties in IOD is addressed. A fully
nonlinear method for IOD is implemented based on the high Taylor expansions delivered by DA
computation. The method, based on the solution of two Lambert’s problems, delivers the solution
of IOD problem and nonlinearly maps uncertainties from the observations space to the state space
already when the minimum (three) number of optical observations are considered. The algorithm
converges for all the cases considered within, on average, three iterations. The average computa-
tional time is 3.6 s when 6-th order computations are carried out.

A linear scheme for updating the state’s first two statistical moments is proposed when more
optical observations are available in a single passage. This scheme is based on the generation
of full state pseudo-observations at a common epoch, taking advantage of polynomial inversion
tools available in DA. The required expectation are computed on high order Taylor polynomials,
limiting the Gaussian assumption to the observation noises only. The updating schemes is shown
to improve the accuracy of state estimation when short-dense observation arcs are available. The
average computational time for the updating scheme is 1.91 s at order 6.

In the present work simplified Keplerian dynamics are used. The algorithms can be easily ex-
tended to arbitrary dynamics by using the DA-based tools for the Taylor expansion of the solution
of ODEs (see 17 for details) and by replacing the Lambert’s solver with a DA-based algorithm for
expanding the solution of two-point boundary values problems (as illustrated in 16). The authors
plan to apply the algorithms to real observations including the case of short-dense radar observa-
tions.
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[3] P. Laplace, “Mémoires de l’Académie Royale des Sciences,” Paris, Reprinted in Laplace’s Collected
Works, Vol. 10, 1780.

[4] G. Merton, “A modification of Gauss’s method for the determination of orbits,” Monthly Notices of the
Royal Astronomical Society, Vol. 85, 1925, p. 693.

[5] A. Celletti and G. Pinzari, “Dependence on the observational time intervals and domain of convergence
of orbital determination methods,” Periodic, Quasi-Periodic and Chaotic Motions in Celestial Mechan-
ics: Theory and Applications, pp. 327–344, Springer, 2006.

[6] G. F. Gronchi, “Multiple solutions in preliminary orbit determination from three observations,” Celestial
Mechanics and Dynamical Astronomy, Vol. 103, No. 4, 2009, pp. 301–326.

[7] P. R. Escobal, “Methods of orbit determination,” New York: Wiley, 1965, Vol. 1, 1965.

17



1 2 3 4 5
10

−4

10
−2

10
0

10
2

10
4

Iteration #

||
r̂
8
−

r
∗ 8
||
[k
m
]

 

 

mean min max

1 2 3 4 5
10

−4

10
−2

10
0

10
2

10
4

Iteration #

||
v̂
8
−

v
∗ 8
||
[m

/
s]

 

 

mean min max

(a) Estimation error (Test Case A)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

−2

10
0

10
2

10
4

Observation #

∆
 α

 [
σ

]

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

−2

10
0

10
2

10
4

Observation #

∆
 δ

 [
σ

]

 

 

it #1 it #2 it #3 it #4 it #5

it #1 it #2 it #3 it #4 it #5
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(c) Estimation error (Test Case B)
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(d) Observation residuals convergence (Test Case B)
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(f) Observation residuals convergence (Test Case C)

Figure 6: Update results for 1st order computations

18



[8] R. Gooding, “A new procedure for the solution of the classical problem of minimal orbit determina-
tion from three lines of sight,” Celestial Mechanics and Dynamical Astronomy, Vol. 66, No. 4, 1996,
pp. 387–423.

[9] R. Armellin, P. Di Lizia, and M. Lavagna, “High-order expansion of the solution of preliminary or-
bit determination problem,” Celestial Mechanics and Dynamical Astronomy, Vol. 112, No. 3, 2012,
pp. 331–352.

[10] O. Montebruck and E. Gill, Satellite Orbits. New York: Springer-Verlag, 2nd ed., 2001.
[11] M. Berz, Differential Algebraic Techniques, Entry in Handbook of Accelerator Physics and Engineer-

ing. New York: World Scientific, 1999a.
[12] M. Berz, The new method of TPSA algebra for the description of beam dynamics to high orders. Los

Alamos National Laboratory, 1986. Technical Report AT-6:ATN-86-16.
[13] M. Berz, “The method of power series tracking for the mathematical description of beam dynamics,”

Nuclear Instruments and Methods A258, 1987.
[14] M. Berz, Modern Map Methods in Particle Beam Physics. Academic Press, 1999b.
[15] M. Berz and K. Makino, COSY INFINITY version 9 reference manual. Michigan State University, East

Lansing, MI 48824, 2006. MSU Report MSUHEP060803.
[16] P. Di Lizia, R. Armellin, and M. Lavagna, “Application of high order expansions of two-point boundary

value problems to astrodynamics,” Celestial Mechanics and Dynamical Astronomy, Vol. 102, No. 4,
2008, pp. 355–375.

[17] M. Valli, R. Armellin, P. Di Lizia, and M. Lavagna, “Nonlinear mapping of uncertainties in celestial
mechanics,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 1, 2012, pp. 48–63.

[18] R. Park and D. Scheeres, “Nonlinear Mapping of Gaussian Statistics: theory and Applications to Space-
craft trajectory Design,” Journal of Guidance, Control and Dynamics, Vol. 29, No. 6, 2006.

[19] G. Casella and R. Berger, Statistical inference. Duxbury Press, 2001.
[20] L. Isserlis, “On a formula for the product-moment coefficient of any order of a normal frequency distri-

bution in any number of variables,” Biometrika, Vol. 12, No. 1 and 2, 1918.
[21] R. Kan, “From moments of sum to moments of product,” Journal of Multivariate Analysis, Vol. 99,

No. 3, 2008.
[22] R. Armellin, P. Di Lizia, F. Topputo, M. Lavagna, F. Bernelli-Zazzera, and M. Berz, “Gravity assist

space pruning based on differential algebra,” Celestial mechanics and dynamical astronomy, Vol. 106,
No. 1, 2010, pp. 1–24.

19


	Introduction
	Differential Algebra tools
	High-order expansion of the solution of ODE
	Expansion of the solution of parametric implicit equations
	Nonlinear mapping of the estimate statistics

	DA-based angles-only IOD
	DA-inversion IOD
	Test Cases
	DA-based angles-only IOD
	DA-based inversion IOD

	Conclusions
	Acknowledgments

