Temperature Sensitivity of an Atomic Vapor
Cell-Based Dispersion-Enhanced Optical Cavity

K. Myneni?, D. D. Smith?, H. Chang?, and H. A. Luckay*
1U.S. Army RDECOM, 2NASA Marshall Space Flight Center, *Miltec, “Jacobs ESSSA Group

Abstract: Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated

experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity
of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S,, due to the

thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the *’Rb D, transition. A semi-empirical model of the temperature-dependence of
the absorption profile, characterized by two parameters, a, (T) and I'_(T) allows the temperature-dependence of the cavity response, S,(T) and dS,/dT to be predicted over a range of
temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S, given the practical constraints on temperature stability for an

atomic vapor cell.
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oss. ' b) Top Right - Temperature 200 295 300 305 310 315 320 32
controller, c ottom Left: Temp. :
stabilized mount without end capg, Temperature, T (K) Conclusions
showing the 2.5 cm atomic vapor cell Fig. 2 Peak absorption coefficient (top) and FWHM resonance width The single Gaussian resonance model is useful for determining the behavior of the
inside. (bottom) vs temperature. Solid curves are computed from a semi-empirical scale factor as a function of the temperature, from which the temperature sensitivity
model with no adjustable parameters, using only the F = 2 — F' = 3 can be readily determined. The predicted critical temperature was within 2 K of the
transition (red) and using all three F = 2 —> F' transitions (green). Dashed full three transition model for the D, F, = 2 resonance. For an assumed atomic
curve is the single transition I', scaled to match the resonance width. vapor temperature variation of 10 mK, S,m is 530 for a variation of S,™>. For any
Ref medium with a Gaussian absorption resonance and with known a,(T) and I (T) we
ererences can use the model to predict its temperature-dependent cavity scale factor
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