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Flow transients during rocket start-up and shut-down can lead to significant side loads on rocket 

nozzles. The capability to estimate these side loads computationally can streamline the nozzle design 

process. Towards this goal, the flow in a truncated ideal contour (TIC) nozzle has been simulated for a 

range of nozzle pressure ratios (NPRs) aimed to match a series of cold flow experiments performed at the 

NASA MSFC Nozzle Test Facility. These simulations were performed with varying turbulence model 

choices and with four different versions of the TIC nozzle model geometry, each of which was created 

with a different simplification to the test article geometry. 

 

1. Introduction 

The design of new rocket nozzles or the use of existing designs in new configurations requires the 

estimation of nozzle transient effects such as occur during start-up and shut-down. These transients can 

cause significant side loads on the nozzle. The relative magnitude of these side loads for different types of 

nozzle contours can be estimated with subscale cold flow experiments. However, determining the 

absolute magnitudes of nozzle side loads requires full scale hot fire tests. These hot fire tests can be costly 

with regards to both money and time, especially if design problems are not discovered until the full scale 

tests. Therefore, a computational tool which can predict these transient effects can greatly streamline the 

design and test cycle. 

 

An accurate prediction of the nozzle side loads requires an accurate prediction of the nozzle separation 

location. Furthermore, the separation location can be affected by nozzle modifications, like the film 

cooling systems applied in radiatively cooled nozzles [1]. Thus a computational tool capable of accurately 

predicting nozzle separation must be able to account for these nozzle modifications. 

 

This paper addresses the computational modeling requirements necessary to predict the effects of nozzle 

film cooling on the surface pressures and separation location in a nozzle. Focus of this work includes the 

simplifications applied to the computational geometry, as well as the turbulence modeling choices made, 

and how these affect the surface pressure and separation location accuracy. To facilitate the discussion of 

solution accuracy, a nozzle with corresponding experimental results was selected. Specifically, the nozzle 

geometry aims to match that used during a series of cold flow nozzle experiments performed at the NASA 

MSFC Nozzle Test Facility (NTF) [2,3]. In this set of experiments, the nozzle pressure ratio (NPR) was 

stepped through a range of stationary values by decreasing the facility back pressure. The aim is to show 
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what level of geometry simplifications and which turbulence modeling choices provide reasonable 

accuracy in determining surface pressures and separation location. 

2. Methodology 

2.1 Model Geometry 

The simulation models were derived from a truncated ideal contour (TIC) nozzle geometry [2,3]. The 

nozzle geometry includes an annular slot in the diverging section, the ‘nozzlette’, which provides an 

auxiliary supersonic flow injection for film cooling. Figure 1 shows a schematic of the nozzle and 

nozzlette. A more detailed view of the nozzlette is shown in Fig. 2. 

 

One axisymmetric and three different three-dimensional (3D) simulation models were created to 

approximate the TIC nozzle geometry. The four different computational models aimed to determine the 

sensitivity of the simulation results to the approximations made in defining the computational model 

geometries and computational grids. Additional computational grids were created to test grid density 

effects but were not included in the tally of four.  

 

The axisymmetric grid uses an equivalent slot area to mimic the effect of the flow blockage caused by the 

teeth, since the orifice teeth cannot be created in an axisymmetric grid. The first of the three 3D 

computational grids, labeled 3D_twoD_tooth, was created by rotationally extruding the axisymmetric 

grid. The two periodic planes of 3D_twoD_tooth match exactly the axisymmetric grid. Like the 

axisymmetric grid, this grid contains none of the orifice teeth, but instead contains an obstruction which 

extends rotationally around the orifice. The second 3D grid, labeled 3D_sqr_tooth, again was created by 

extrusion, except for the nozzlette tooth region. For this grid, the rounded tooth design of the TIC 

nozzlette geometry was replaced with a squared tooth design. The squared tooth design aimed to provide 

3D blockage to the nozzlette flow equivalent to that anticipated with a rounded tooth while maintaining 

the ability to use a structured grid in the nozzlette orifice region. The final 3D grid, labeled 3D_rnd_tooth, 

includes a tooth and channel which match the design of the TIC nozzlette. The bulk of the computational 

domain of these last two grids match exactly grid 3D_blockage. The difference shows only in the 

nozzlette region. All three 3D grids span a single tooth/channel section azimuthally. 

 

 
Figure 1: The TIC nozzle approximate contour with the film cooling nozzlette 
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Figure 2: The nozzlette geometry with an upstream view of the actual hardware (left) and an isometric 

view of the manifold and nozzlette orifice (right) 

2.2 Simulation Methodology 

The simulations were performed to steady state using Loci/CHEM. Loci/CHEM [4 – 6] is a density-based 

finite-volume CFD program built upon the Loci [7,8] framework. To reach steady state in fewer 

iterations, a two stage process was used involving changes to a limited number of boundary conditions 

and Loci/CHEM settings. For each different axisymmetric grid configuration, the corresponding 

simulations were stepped forward through NPR using the result of the previous NPR’s simulation as the 

initial condition. For each 3D grid configuration, the simulation started using the corresponding 

axisymmetric steady solution as the initial condition. The turbulence models included in this investigation 

are Menter’s baseline (BSL) [9,10] and Menter’s Shear Stress Transport (SST) [9,10] models, and the 

compressibility corrections are those by Sarkar [11] and Wilcox [12]. 

 

3. Preliminary Results 

The simulations presented here aim to approximate a set of experiments performed at the MSFC NTF 

[2,3]. In the experiments, heated dry air was delivered to the test article. Experiments were conducted 

over a range of NPRs by varying the pressure in the test cell through the use of an ejector system. Two 

auxiliary nozzlette flow rates are documented here, no film flow and supersonic film flow. 

 

The experimental measurements included a dense array of static pressures along the nozzle surface [2,3]. 

These measurements of pressure allow the determination of the nozzle wall separation location. Thus, the 

primary quantities of interest for the simulations are the nozzle surface pressures and the locations of 

separation. For the remainder, the surface pressure distributions will be reported normalized by chamber 

pressure and plotted versus axial distance normalized by the nozzle throat radius r*.  

 

Results for the axisymmetric grid were computed for a set of turbulence modeling choices which are 

listed in Table 1. Each of these selections was performed for both auxiliary flow cases. Figures 3 and 4 

display the pressure profiles for no auxiliary nozzlette flow and supersonic nozzlette flow, respectively. 

For no nozzlette flow, case A1 which uses Menter’s BSL turbulence model and the Sarkar compressibility 

correction, generally matches the experimental results the closest. The other three model combinations 

show early separation for every NPR, whereas A1 matches the pressures very closely for NPR 110, shows 

late separation for lower NPRs, and early separation for higher NPRs. For the cases with supersonic 
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nozzlette flow, A2 tends to match experiments the closest, with late separation at NPR below 50 and early 

separation with NPR above 50. A3 and A4 show early separation for every NPR except 15, and A1 shows 

late separation for NPRs below 145. 

 

Table 1: Turbulence model selections for the axisymmetric simulations 

Case Turbulence model Compressibility correction 

A1 BSL Sarkar* 

A2 BSL Wilcox 

A3 SST Sarkar* 

A4 SST Wilcox 

 

 
Figure 3: Non-dimensional pressure profiles for the axisymmetric grid with no auxiliary nozzlette flow 

with case A1 solid lines, case A2 dotted lines, case A3 dashed lines, and case A4 long dashed lines, 

plotted against the experimental results in symbols 
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Figure 4: Non-dimensional pressure profiles for the axisymmetric grid with supersonic auxiliary nozzlette 

flow with case A1 solid lines, case A2 dotted lines, case A3 dashed lines, and case A4 long dashed lines, 

plotted against the experimental results in symbols 

Preliminary results for the 3D grids were all computed using the same turbulence model selection, 

Menter’s BSL model with the Sarkar* compressibility correction, with supersonic nozzlette flow. These 

results are displayed against the corresponding axisymmetric results and the experimental results in 

Figure 5. For NPRs 15 and 40, when separation occurs upstream of the nozzlette exit, all computational 

models produce the same separation location. For NPRs 50 and 60, the different models produce different 

separation locations. The axisymmetric model and 3D_blockage match very closely, which is expected 

given that the 3D model is the axisymmetric model rotationally extruded. The models which involve 3D 

geometric features in the film coolant path tend to show separation farther downstream. This effect is 

caused by the penetration of the nozzlette film cooling. For the cases involving 3D features, the film 

cooling flow remains focused in a narrower ‘jet’, allowing it to penetrate further into the main nozzle. The 

greater penetration of the nozzlette’s momentum, as compared to that for the models with 2D nozzlette 

features, delays the point of separation farther down the nozzle surface. An exception to this trend 

occurred with 3D_sqr_tooth at NPR 50, which showed separation still at the nozzlette exit. When 

compared to the experimental results, the axisymmetric and 3D blockage models match better than the 

grids which incorporate 3D features. This does not imply that the blockage models are a better 

representation of reality. This only implies that the set of modeling choices and geometry simplifications 

made in defining the problem lead to a better match with experiment for the blockage models. 
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Figure 5: Non-dimensional pressure profiles at various NPR for all grids using Menter's BSL model and 

Sarkar* compressibility correction plotted against the experimental results 
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4. Preliminary Conclusions 

A series of axisymmetric and 3D grid topographies were developed to approximate the TIC nozzle film 

coolant injection geometry. These various models were created to determine the sensitivity of the results 

to the simplifications applied to the geometry for the film injection. The axisymmetric equivalent area slot 

geometry matches closely its 3D rotationally extruded counterpart (3D_twoD_tooth), thus little appears to 

be gained by treating the equivalent area slot case with a 3D grid. The simulations involving the two grids 

with 3D features, the squared-off tooth representation (3D_sqr_tooth) and the rounded tooth 

representation (3D_rnd_tooth), generally exhibit a longer delay to separation for the higher NPR cases 

than the equivalent slot area cases. 

 

Generally, while the exact positions of the flow separation cannot be predicted by these simulations, the 

overall trend of the surface pressures and separation locations can be predicted fairly well. The results 

typically show one NPR at which the simulation’s separation location matches the experiment, while 

lower NPRs show late separation (off by less than one nozzle throat radius, r*) and higher NPRs show 

early separation (off by less than 0.5 r*). 
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