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A single metric for judging between two candidate propellant combinations for a given application is
sought. By using the ideal rocket equation, the essential link between propellant density and specific
impulse as the two primary performance drivers can be demonstrated. This is most clearly illustrated
for the case of a volume-limited first stage.
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Where AV is the change in velocity required of the stage, and V. is the propellant exhaust exit velocity,
equal to the gravitational constant times the Specific Impulse, Isp. The initial mass, m;, and final mass,
ms, are not always the most useful values, so the equation can be rewritten any number of ways:
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A relationship is sought that allows identifying a reference stage, and answering the question “what
different stage can deliver the same AV?” For first stages and boosters, the latter formulation,
containing the propellant mass, mp, and retaining my, is most useful. A more specific question to pose
might be, “for the new candidate propellant, can a stage be built in the same volume as the baseline
stage?” If the answer is “no,” then that would tend to question any claim of a propellant being a “drop-
in replacement.”

The assumption of volume-limited is not solely for cases in which there is a physical stop to the stage
size that can be realized, but could also take into account the desire to maintain the same volume as the
reference stage for cost reasons. Perhaps a larger stage could be built, but is likely more costly, and thus
less desirable. In addition, the reference stage could be either a real existing stage looking to be
upgraded, or a baseline design for a paper study. This assumes that msis constant for the evaluation, by
assuming that two stages of the same volume have the same mass, thus leaving the same amount of
mass available for the stage’s payload. Clearly this assumption is not valid across propulsion types, from
solids to liquids. Below it is evaluated in more depth and shown adequate within all liquid combinations
evaluated except LOX/Hydrogen. The treatment of this for a first stage is important, because for upper
stages, if the total stage weight changes, a different AV will be required. That result will be looked at
later in light of constant initial mass stages.
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Where p is propellant density, case 0 is the reference and case 2 is the candidate replacement,
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Ro is set by the reference vehicle, and along with the AV requirement represents the mission, and R; can
be derived from the known densities.
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This was found by Mellish and Gibb?, and can be used directly by setting the delta velocity ratio equal to
1 and solving for minimum required r,, given a change in Isp or vice versa.

Gordon? identified the usefulness of the following expressions, such that a single performance factor f,
is computed by density, an exponent and Isp, where the maximum f, identifies the highest performing
propellant for the mission.

fo = p"Isp

From the above analysis, n is computed by partial differentiation of the above AV equation, and ends up
itself being a function of both the mission and the change density ratio being evaluated:
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It can be approximated based on solely the mission parameter R for small density ratios, at r, = 1. This
was the only solution examined by Gordon?.
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Now the behavior of the exponent n can be examined as a function of the relevant mission and
propellant parameters. First, for density ratios like those experienced within varying solid propellant
composition with typically used ingredients. The resulting n is plotted against two parameters. R, and
Rmp = 1 —1/R, which is the ratio of stage propellant mass to total vehicle mass.
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Figure 1: Density Exponent n Demonstrates the Effect of Density Relative to Isp for Different Conditions

Note that the primary driver is the mission, how much of the reference stage is propellant. Of
secondary importance is how different are the densities of the two propellants. Note that the smaller
the stage relative to the vehicle, the more important density is, approaching the same importance as Isp
on a percentage basis. On the plot are shown three example solid motor systems for reference®>*>®. An
example of how higher density propellants fare in one of these will be shown in the final paper.

For liquid bi-propellants, due to the broader density range, the exact equation is essential for capturing
the performance. The figures below show this for the different density ratios. Note that here the
relevant R, zones are much higher, exemplified by the Delta IV-H and Atlas V lines’.
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This can be looked at plotting Isp vs. density relative to the reference for each propellant combo, where
a higher-performing propellant combination is one that is above and right of the lines of constant
performance. So, with LOx/RP1 as the baseline, it is seen that that liquid methane, LCH4, though higher
Isp, loses performance due to its lower density. Conversely, the lower Isp peroxide and IRFNA oxidizers
nearly make up for it in density for these cases. In the next plot, the performance measure is plotted
directly. There the significant departure from the simplified equation is seen with LOx/LH2.
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Departure from “same final mass” assumption

Now a revisit is warranted of the constant final mass assumption. Given the constant stage volume, the
propellant mass fraction of the candidate stage can be computed from the reference stage and density
ratio, where A is the propellant mass fraction of the stage:
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A good test of the assumptions is to use this to predict the Delta IV Common Booster Core (CBC) based

on the Atlas V core stage. Because these stages have similar application, thrust-to-weight, and

development era, one would expect the equation above to predict accurately, if indeed the “same

volume means same final mass” assumption is valid across that propellant range. Even though they are

not the same volume, since they are large enough for scale to not matter, the non-dimensional mass



fraction should still work. However, starting with Atlas V’s 0.93, the equation predicts a Delta IV CBC
mass fraction of 0.82, while its mass fraction is actually published as 0.88’.

Next order mass model

This suggests that a stage inert mass model is required that depends on more of the relevant
parameters. A more complete mass model should account for the individual densities and O/F ratios of
the propellants, and also thrust-dependent aspects of the stage mass. The thrust-dependent structure
includes the engines and non-wetted structure associated with them, and also the fuel tank, because
the loads to accelerate the heavy load of oxidizer above must be transmitted through the walls of the
fuel tank.

The strategy here is to identify constants that describe the Atlas V core and then use scaling equations
to predict other stages based on propellant density ratios, R, and changes in engine thrust-to-weight and
vehicle lift-off thrust-to-weight. The possibilities were adjusted until the Delta IV CBC was predicted
with the most parsimonious model, containing two free factors. The derivation will be described in more
detail for the final paper, but is summarized below:

Defining f; as the ratio of component or subsystem inert weight to total propellant weight, the key
settings for Atlas V are:

fitanko = 0.02, for the composite fuel and oxidizer tank and volume-related systems weight.
fieas0=0.0529, for the engine and structure weight.

fitanko is decomposed into fisofor the fuel tank and f’; o0 for the oxidizer tank, here apportioning them
by volume as follows, based on the oxidizer to fuel mass ratio O/F:
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This method assumes the engine and structure weight, as thrust-dependent weight, is a constant
multiple, rr, of the engine weight, and proportional to the launch loads, represented by vehicle thrust-
to-weight at launch, . This could be artificially skewed by using engine thrust-to-weights much
different from historical nominal values, but having the dependence on engine weight represents real
effects of main propulsion system components masses depending on mass or volume flow rate. The
engine thrust-to-weight used here should be representative of the propellant class. The above settings
provide the rr with the associated Atlas V W and engine thrust-to-weight, FWgn,, as follows:

re=2.735
Wy = 1.28, using vacuum thrust to keep things simple
FWEng = 78

Then the calculation of engine and structure inert fraction is:
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The fuel tank inert fraction is given below. This includes not only volume-dependent mass but also
loads-dependent mass, as the fuel tank has to support the weight of the oxidizer and stage payload
through the launch accelerations.
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Where ry is the ratio of fuel density to reference fuel density. Finally, the oxidizer tank mass is assumed
to be based solely on the volume of oxidizer, as follows:
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Where rpox is the ratio of oxidizer density to reference oxidizer density.

The reference ox and fuel fractions are given as f’; because they are defined as individual tank mass to
individual oxidizer of fuel mass, respectively, while the calculated f; are individual tank mass to total
propellant mass, and are simply summed. The total inert fraction and propellant mass fraction are then

fitotat = fift + fiot T fipss
1
1+ fi,total

The result is that for any set of stage construction assumptions, i.e., a reference stage, the fio can be

A

estimated according to the level of information available. Then comparable other stages mass fractions
can be estimated. For instance, one could set the constants according to the existing LOx/LH2 Centaur,
and estimate a LOx/LCH4, 1.3 thrust-to-weight “Centaur.”

The final paper will compare propellants with these models for boost and modified single-stage-to-orbit
applications. It will also demonstrate mass fraction models as a function of stage propellant mass for
stages small enough to show significant mass fraction reduction. This is based on the empirical solid
rocket motor data, with the scaling law extended to liquids and compared to the less extensive database
of small liquid stages. The combination of these models then allows the exploration small launch vehicle
design spaces, and the beginnings of design-to-lowest-cost optimization.
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