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The International Space Station Carbon Dioxide Removal Assembly uses zeolite 5A 
molecular sieve material packed into beds for the capture of cabin CO2.  The beds are 
cyclically heated to drive off the CO2 and restore the removal capacity.  Over time, the 
sorbent material has been found to break down resulting in dust that restricts flow through 
the beds.  Humidity adsorbed in the 5A zeolite when it is heated is a suspected cause of this 
sorbent degradation.  To evaluate the impact of adsorbed water during thermal cycling, the 
Hydrothermal Stability Test was developed.  The test configuration provides comparative 
side-by-side flow restriction data for two sorbent materials at specifically controlled 
humidity levels.  While the initial focus of the testing is on 5A zeolite materials currently 
used on the ISS, the system will also be used to evaluate future candidate materials.  This 
paper describes the approach, the test system, current results, and future testing. 

Nomenclature 
 
4BMS = 4-Bed Molecular Sieve 
CDRA = Carbon Dioxide Removal Assembly 
HST = Hydrothermal Stability Test 
ISS  International Space Station 
LEO = Low Earth Orbit 
mmHg = millimeter of mercury (Torr) 
pp = partial pressure 
slpm = standard liters per minute (STP= 0 ⁰C, 760 mmHg) 

I. Introduction 
Removal of carbon dioxide from the cabin atmosphere is a critical function of any spacecraft's life support 

system.  Minimizing mass, power, and volume is always a prime consideration and, for missions of other than of 
short durations, a regenerative system that requires the least amount of consumables is required.  As critical as these 
factors are, long-term reliability is also of utmost importance. The ISS Carbon Dioxide Removal Assembly (CDRA) 
is a state-of-the-art system for cabin CO2 removal that utilizes fixed beds of sorbent pellets and is currently the 
baseline technology for use in future crewed exploration missions beyond LEO.   

The ISS CDRA utilizes a fully regenerative thermal/pressure swing adsorption process that is generically 
referred to as a 4-Bed Molecular Sieve (4BMS). It operates cyclically and employs two desiccant beds and two 
adsorbent beds. As one desiccant bed and one adsorbent bed operate in adsorption mode (flow of humid and CO2 
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laden cabin air), the other two beds are desorbing (regenerated with heat and vacuum). Half way through a cycle, the 
beds switch modes, providing continuous CO2 removal capability. The thermal swing process allows the system to 
function in a closed-loop architecture.  The closed-loop designation refers to the fact that the CO2 can be recovered 
from the 4BMS process and delivered to subsystems that can then recover the O2 from the CO2. 

The 2 on-orbit CDRAs have operated extensively over a period of several years but an increasing and ultimately 
excessive differential pressure across the sorbent beds during operation has been a recurring problem. The increase 
in pressure drop has been traced to the breakdown of the sorbent materials and subsequent blockage of the system 
filters and screens.1 Modification of CDRA components and replacement of the original 5A ASRT zeolite 
cylindrical pellet material with the spherical RK-38 material did not cure the problem.  To address this issue, and to 
identify potential improved materials and processes, an effort to better characterize the current and potential 
replacement sorbent materials was undertaken.2,3  

Tests performed to determine crush strength of the sorbent materials showed a clear sensitivity of the crush 
strength to absorbed water4. This observation, along with the evidence that the on-orbit CDRA with RK-38 sorbent 
is experiencing higher than expected humidity exposure and that the pressure drop is increasing more rapidly than 
expected, led to the development of a new test regime.5 The Hydrothermal Stability Test (HST) was subsequently 
developed to evaluate the sorbent material with elevated and controlled humidity levels while being thermally 
cycled with the same temperature profile as present in the ISS CDRA. 

II. Approach for Evaluating Hydrothermal Stability of Sorbents 
The primary objective of the HST is to provide simultaneous comparison testing of two 5A molecular sieve 

sorbents while being conditioned to 4 specific humidity levels and subjected to the thermal cycles and airflow rates 
as found in the ISS CDRA. The pellet degradation is expected to be progressive and the test is designed to operate 
for an extended period. There are two parameters of sorbent evaluation criteria for the HST. The first, and most 
applicable to the on-orbit observations, is the generation of dust as measured by pressure drop increases measured 
across the downstream screen and filter for each test bed assembly. The second evaluation parameter is the 
measured crush strength of pellets, which are periodically removed from the test bed assemblies over the duration of 
the test process. This second criteria required that each test bed volume be sufficient to allow 50 pellets to be 
removed at least 20 times before the end to the test sequence. 

Table 1 lists the flow and humidity of the inlet process gas specified for the adsorption half cycle for each test 
condition. Reference 5 details the analysis used to derive the inlet humidity conditions but in general, the driest 
condition represents that which is present in a fully functioning CDRA, while the wettest condition would result in a 
CDRA with 20% loss of CO2 removal performance. The 1.38 slpm adsorption flow rate was selected so that the 
superficial velocity of the process air through the sorbent bed will equal that present in the CDRA sorbent bed.  

 

Case 
Inlet H2O pp, 

mmHg 
Flow Rate, 

slpm 

Dew Point 

°F °C 

1 < 7.25x10-5 1.38 -130 max -90 max 
2 0.012 1.38 -71 -57 
3 0.70 1.38 -6 -21 
4 1.38 1.38 7 -14 

 
 

The temperatures, and perhaps more importantly 
the rate of temperature change, may be critical 
components of the observed degradation of the 5A 
zeolite material. At the same time, the flow restriction 
observed on the ISS CDRA, took a significant amount 
of time before becoming an issue. For the HST, a 
compromise thermal profile was selected that 
maintains the adsorb and desorb temperatures as well 
as the rate of temperature change while also 
compressing the total length of a cycle. Table 2 shows 

Table 1. HST Process Gas Humidity and Flow Requirements 

Table 2. HST Sorbent Temperature Profile 

Step
Time, 

Minutes

 Temperature Ramp 
Rate

 °C °C/min 

1 0  10  
2 68.5  204.4 2.84 
3 72.5  204.4  
4 113.7  10 -4.72 
5 145  10  
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the time/temperature set points for the HST. The plot in Figure 1 shows the HST thermal profile as compared with 
the nominal ISS CDRA profile. This thermal profile maintains the critical CDRA thermal parameters while nearly 
doubling the number of cycles performed in the time 
available. 

Desorption for the ISS CDRA is a 
thermal/vacuum process with the bed placed under 
vacuum as it is heated. The vacuum facilitates 
removal of the water vapor and CO2 from the bed as 
the increased heat drives it from the sorbent material. 
To simplify the design of the HST, the vacuum is 
replaced by a low flow rate of dry purge gas during 
the desorption half-cycle. Although the flow rate of 
the purge gas is not critical, it must be low enough to 
minimize the cooling effect on the sorbent material, 
which could cause a thermal gradient across the bed 
assembly.  

As stated earlier, the volume of each test bed is 
driven by the requirement to allow removal of 
material for crush testing periodically during the test 
process. To match the thermal characteristics of a 
heater channel within the CDRA, a cylindrical tube 
with an I.D. of 11.1 mm was chosen, resulting in a 
length of ≈165 mm. The cylinder is fabricated from 
Invar to minimize the possibility of pellet crushing 
due to the thermal contraction and expansion of the 
tubing. A drawing of the bed assembly is shown in 
Figure 2. The inner tube contains the 5A material 
while the outer tube surrounds the heater and 
passages for the cooling airflow.  

The pellet containment features of the test bed 
cylinder include a movable screen on the upstream 
side that can be adjusted as material is removed for 
testing, and a downstream screen. The downstream 
screen has 50 µm openings, which are the same as 
in the bed screens in the CDRA. Initially the outlet 
screen was fabricated from a solid end piece, which 
was then perforated with multiple 50 µm openings. 
However, after early test runs yielded inconsistent 
results, the outlet containment system was 
redesigned to accommodate a wire mesh screen of a 
50 µm pore size. This configuration more closely 
matches the CDRA bed containment system. 

III. Test Stand Description 
A simplified flow schematic for the test stand developed to implement the HST is shown in Figure 3. The test 

stand is configured with 8 identical test beds that are assembled with instrumentation and control components into 8 
test article assemblies. These assembles, identified as A1 through A8 on the schematic, are paired to allow side-by-
side test of the 2 types of zeolite. For the initial testing, the 2 types of 5A zeolite under evaluation are the RK-38, 
currently in the on-orbit CDRA, and the ASRT which was in the CDRA previously. The test stand incorporates over 
100 instrumentation and control channels that are monitored and recorded during all operations. 

Details of the test stand temperature control are not shown on the schematic but the entire stand is enclosed in a 
temperature-controlled chamber that is maintained at 10 ⁰C. This ensures that the process gas is at the same nominal 
temperature of the air entering the ISS CDRA sorbent bed during the adsorption half-cycle. Each test article 
assembly incorporates individual heater and cooling airflow control mechanisms. The pairs of test article assemblies 
are set to alternate half-cycles so that half of the assemblies are in the adsorb half-cycle while the other half are 
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Figure 1. HST vs CDRA Cyclic Temperature Profile 

Figure 2. HST Test Bed Configuration 
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desorbing. Although this configuration requires that the adsorb and the desorb half-cycles be of the same length, it 
does allow a somewhat simpler sorbent cooling system.  

The humidity of the adsorption gas streams are set by controlled mixing of a humidified gas stream with a dry 
stream. In each case, a constant dry gas flow is maintained while the humidified mix gas flow is controlled to obtain 
the desired water vapor partial pressure as measured by an in-line hygrometer. The humidified flow rates shown on 
Figure 3 are nominal values for the adsorb half-cycle. During the desorption half-cycle, the humid gas flow is shut 
off so that only dry gas is used for the purge flow. The inlet flow conditioning system uses a bypass flow approach 
that continuously vents excess gas and maintains a constant pressure and flow for gas mixing and measurement. 
This assures accurate and consistent inlet gas conditions. Each test article assembly has a dedicated flow controller 
to assure the correct flow through the beds despite the fact that the pressure drop across the assemblies may be 
different. Assemblies A7 and A8 are provided with dry gas only, although an in-line hygrometer monitors the gas to 
assure that the humidity does not exceed the requirements.  The initial configuration of the test stand used high-
purity air for the process gas; however, early testing was impacted by excess humidity, so the stand was converted to 
use dry nitrogen. 

An outlet sample system allows the exiting gas from any of the test beds to be selected and passed through a 
hygrometer to monitor the humidity of the outflow. The outlet hygrometer can measure the humidity of both the 
adsorb flow and the purge flow. Although measurement of the outlet humidity is not a primary requirement for the 
HST, the capability does allow changes in water removal characteristics to be identified and monitored.   
 

 

Figure 3. Simplified Flow Schematic of HST Stand 
 

Figure 4 shows the schematic view of a test article assembly. The differential pressure sensor, PD1, measures the 
pressure drop across the sorbent material and the 50 µm outlet screen, while sensor PD2 measures the drop across a 
2 µm sintered stainless steel filter that is placed downstream of the screen to catch smaller dust particles. These 
differential pressure measurements provide the primary evaluation criteria obtained during HST cyclic operations.  
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Figure 5 shows a photo of the test stand as assembly was nearing completion. In this view, the test article 
assemblies (the vertical tubes in the center of the photo) are being insulated. The insulated hoses in the forefront are 
the cooling air inlet and outlet lines.  

 

Figure 4. Schematic of Test Article Assembly 
 

 

Figure 5. HST Test Stand in the Final Stage of Assembly 
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IV. Test Operations 
The HST began operations in July of 2014. The cycle time chosen for HST operations allowed each day to equal 

almost 2 days of CDRA thermal cycles. Since it was not known how soon any degradation in material strength 
might be detectable, the initial runs were set to operate for less than the equivalent of one month of CDRA 
operation. 

Figure 6 shows the recorded temperature and inlet humidity conditions for the A4 and A5 test cells over a typical 
half day of operation. The temperature shown is the average of the 3 internal and the single wall mounted 
thermocouples. The A4 and A5 assemblies are on alternate half-cycle schedules, which explains why the plot shows 
that the A4 temperature is rising while the A5 temperature is falling. The A4 cell is a part of the A3/A4 pairing that 
receives the inlet flow with 0.7 mmHg H2O pp while the A5 cell, along with the A6 cell, receives the 1.38 mmHg 
H2O pp. For both pairs, the water vapor partial pressure of the dry purge during the desorption half-cycle is less than 
1x10-5 mmHg H2O.  The higher value on the plot for the A5 H2O pp during the purge is due to range limitations of 
the hygrometer. 

 

 

Figure 6. Typical Temperature and Inlet Conditions for 1/2 Day of HST Operations 
 
Figure 7 shows the temperature and inlet/outlet humidity over one cycle for the A4 assembly. As stated 

previously, the A4 and A5 assemblies receive 0.7 mmHg H2O pp inlet flow and are in the midrange of the selected 
humidity test conditions. Due to this, the inlet/outlet humidity levels of the other test cell pairs have different 
magnitudes, but the general characteristics are similar. The temperature profile for all the assemblies are controlled 
and are the same for all test assemblies. 

Each cycle begins with a desorption half-cycle where the sorbent is heated at the specified rate. A purge flow of 
0.1 slpm of dry gas is maintained for the entire half-cycle to displace the water vapor that is driven off the sorbent 
material. As can be seen in the plot, the water begins to desorb at ≈100 ⁰C.  The discontinuity seen on the outlet 
humidity plot as it is rising is actually an artifact of the chilled mirror hygrometer where the frost layer on the mirror 
transitions to liquid condensation. This characteristic is exacerbated by the low flow rate of the purge. 
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At the start of the adsorb half-cycle the humidity of the inlet stream is set to the nominal value but the flow rate 
is set to the minimal value of 0.02 slpm.  This low flow prevents the sorbent from cooling too quickly but it also is 
not sufficient for the outlet hygrometer to track the humidity level.  Once the bed has cooled to ≈120 ⁰C, the full 
1.38 slpm adsorption flow is set and maintained for the remainder of the adsorb half-cycle. 

 

 

Figure 7. Typical Hydrothermal Profile of an HST Cycle 
 

 
Table 3. HST Runs Completed 

In addition to cyclic operation, the HST requirements also include 
removal of some sorbent material for offline strength testing. To 
accommodate this action, the cyclic testing was periodically suspended and 
the test article assemblies were removed and disassembled.  After removal of 
the designated number of 5A sorbent pellets, the assemblies were replaced in 
the test stand and cyclic testing resumed.  Each period of uninterrupted 
cyclic operation is designated as a run and the first 4 runs of cyclic operation 
were from 12 to 15 days in duration.  Table 1 lists the actual duration of each of the completed runs.  The longer run 
is the last one for which data was available for this paper.  The ongoing and future test runs are scheduled for similar 
length durations as Run #5.  

V. Pressure Drop Results 
The primary evaluation criteria produced by cyclic test operations are the pressure drop measurements across the 

bed assemblies and the post bed filters. The pressure drop across these elements is a function of volumetric flow rate 
as well as the restriction to flow. Although the adsorb flow is set to a constant mass flow rate, changes in gas 
temperature have a significant effect on the measured pressure drops. To compensate for this, the HST control 
software is configured to calculate the average of each pressure drop measurement while the bed temperature is 

Run # Duration, Hours 
1 260 
2 300 
3 380 
4 320 
5 1056 
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within 2 ⁰C of the adsorb temperature set point. This calculation is updated for each adsorb half-cycle and is 
recorded by the data acquisition system. 

At the end of each run of cyclic operation, the pressure drop measurement data was analyzed to determine if a 
statistically significant change in pressure drop could be found and if the results were consistent with prior runs.  By 
the end of the 4th run, however, it became clear that the data was inconsistent between runs and that the testing was 
not generating statistically significant results. This inconsistency was particularly evident in the initial bed pressure 
drop measured at the start of each run.  

A review of the HST hardware and processes was undertaken to find the cause of the inconsistent results. The 
review found two major contributors. The primary issue was found to be in the configuration of the outlet screens. 
The test bed outlet screen was fabricated from a solid end piece, which was then perforated with multiple 50 µm 
openings.  Under microscopic examination, it was found that many of the openings were blocked to varying degrees 
in the fabrication process. Also in some cases, the openings were blocked by sorbent dust particles that had become 
lodged in the openings. The process for handling the test beds when removing sorbent material for strength testing 
was found to be a contributing issue. The method used did not adequately control the amount of dust that remained 
in the test beds and outlet screens between runs.   

To address these issues, the sorbent retaining system was redesigned to use a wire mesh screen with a 50 µm 
pore size. The wire mesh is more open than the previous design and the geometry of the screen makes it more likely 
that a dust particle that is too large to pass through, will sit on top of the screen and less likely it will be trapped 
within the pore. This makes it easier to remove the dust prior to the start of the next run. The process for removing 
the sample of pellets at the end of a run was also modified.  The new method provides for a more consistent removal 
of dust after pellet removal from the test bed before the start of the next run. The relatively short run durations for 
the initial testing was also found to be a potential problem and that a much longer duration would give the 
susceptible pellets time to degrade and for dust particles to migrate to the bed outlet screens before the end of the 
run. 
 

 

Figure 8. Differential Pressure across Test Beds during 1056 Hour Run 
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Figure 8 shows the pressure drop over the duration of the run that was performed after the test bed redesign. The 
test run lasted 1056 hours, which is the thermal cycle equivalent of ≈87 days of ISS CDRA operations. The plots 
show that, for the RK-38 material, there is clear correlation between the increase in pressure drop and the humidity 
of the process gas. Since the RK-38 and ASRT materials have different pellet shapes and packing characteristics, the 
initial pressure drop for the ASRT is nearly twice that of the RK-38. However, as the figure shows, there was 
minimal increase in the pressure drop across any of the ASRT beds. A numerical analysis of the data indicated that 
the increase in pressure was linear in nature and relatively constant over the duration of the run for all of the 
humidity cases. 

Table 4 shows a compilation of the results for the test run.  The rate of pressure increase is normalized to percent 
increase per 1000 hours of HST operation. The pressure across the test beds containing the ASRT increased 5% to 
10% per 1000 hours but no correlation with inlet humidity is apparent.  For the RK-38 material however, the 
correlation is evident. For the RK-38 bed with the driest inlet stream the pressure increase is similar to that of the 
ASRT beds, for the wetter cases the increase is significantly higher. 

 
Table 4. Test Bed Pressure Change per 1000 Hours of Cyclic Operations 

Inlet H2O pp, 
 mmHg 

RK-38 Bed Pressure Drop ASRT Bed Pressure Drop 
Initial Pressure, 

 Pa 
Pressure Increase, 

% /1000 Hours 
Initial Pressure, 

 Pa 
Pressure Increase, 

% /1000 Hours 
< 1x10-5 190 9.2 413 8.23 

0.012 177 15.0 399 5.64 
0.70 185 62.8 389 9.49 
1.38 188 74.5 397 6.65 

 
The HST test article assemblies include a downstream filter with a 2 µm pore size to catch any dust that passes 

through the 50 µm bed outlet screen. Figure 9 shows the pressure across the filters.  No statistically significant 
increase could be identified for any of the assemblies.  The filters are sintered stainless steel and have a large surface 
area.  Due to this, the lack of measurable increase does not necessarily mean that no fine dust was captured but 
rather that the amount was too small to be measured by the resolution of the instrumentation. These results do 
indicate that generated dust particles are primarily larger than 50 µm. 

 

 

Figure 9. Differential Pressure across 2 µm Filter during 1056 Hour Run 
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VI. Conclusion and Future Work 
The HST was developed to provide the unique capability for assessing the susceptibility of sorbent materials to 

degradation when subjected to thermal cycling under other than dry conditions. The results of the testing so far 
validate the on-orbit observation that the RK-38 sorbent can degrade faster than the ASRT material. The test results 
also show that the accelerated degradation can be correlated to increased humidity of the process gas. Data from the 
on-orbit CDRA operations indicate that the humidity of the gas entering the sorbent beds is sometimes higher than 
design levels and the findings of the HST help explain the observed faster than expected pressure rise.  

Operations on the HST stand are continuing with the same samples of ASRT and RK-38 documented herein. 
The objective of this extended testing is to determine if the material degradation trends continue at the initial rates or 
if they change over time. Once this determination has been made, the test sequence will be terminated and the test 
stand readied for a test sequence to evaluate alternative ISS CDRA sorbents. The sorbent pellets removed from the 
test assemblies during the HST cyclic testing are undergoing strength testing and the results were unavailable for 
this paper. When complete, the results of the strength tests will be merged with the HST pressure drop data to 
provide a more complete analysis of the hydrothermal stability of the materials.  

Future regenerative air revitalization systems are expected to utilize a temperature-swing process much like that 
of the current ISS CDRA implementation. The results of the HST show that a test to verify the hydrothermal 
stability of any sorbent candidate should be included when assessing the suitability for use in future closed-loop life 
support systems.  
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