Development of NASA’s Sample Cartridge Assembly: Design, Thermal Analysis, and Testing
ICES-2015-296

NASA / Marshall Space Flight Center

Brian O’Connor
Deborah Hernandez (Jacobs ESSA Group)
James Duffy

Hilton Bellevue, Bellevue, WA
July 12-16, 2015
Outline

• Background of ISS Material Science Research Rack
• SCA Design Overview
• Thermal Modeling and Analysis Method
• Development Testing Activities
• Brazing Process
• Summary
• Future Work
• References
ISS Material Science Research Rack

- MSRR provides materials science research in low gravity
- Housed inside the Destiny Laboratory
- Developed by NASA and ESA, launched in 2009
- Contains ESA’s Materials Science Lab
Material Science Lab

- Built by ESA
- Process material samples. For example: directional solidification, crystal growth, etc.
- Two furnace inserts available: Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF)
- Multiple experiments that have been processed using ESA’s SCA
Low Gradient Furnace (LGF) Insert

• Vacuum furnace
• Bridgman style furnace with multiple heater zones
 – Two hot cavities separated by an adiabatic zone
• Max operating temperature of 1400°C
• Thermal gradients up to 40°C/cm
Thermal Environment

- The two heated sections inside the LGF allows for a long sample to have a solidification front.
- By translating the furnace allows for directional solidification.
- The furnace can also be operated as an isothermal furnace.
Sample Cartridge Assembly (SCA)

- Holds the principle investigator (PI) material sample.
- Provides one level of containment for the sample.
- Provides instrumentation (e.g. temperature sensors and pressure sensor).
SCA Project Background

• NASA started developing a SCA in early 2000’s
 – Project was canceled in 2005, just after its critical design review (CDR)
• Restarted around 2010
 – Inherited the earlier design
• During build up of the first unit numerous problems arose that caused a redesign
 – Discussed more in coming slides
Design Drivers

- Reusability
- \(<10^{-8}\text{sccs}\) helium leak rate
- \(1300^\circ\text{C}\) processing temperature
- Compatible with science samples
- Head temperature \(<90^\circ\text{C}\) during processing
- Large volume in the head for instrumentation wires
- Nominal helium fill gas (assessing Argon)
Design Overview

• Head:
 – Two conflat flanges
 – Two major welds
 – One braze
 – RTD and pressure sensor separated from tube heat flow

• Tube:
 – Vapor plasma sprayed Mo-Re
 – Inner coating of alumina
 – Outer coating of zirconium boride
Thermal Analysis

- Thermal Desktop®
- Some components meshed in FEMAP©
- Redesign relied on thermal analysis
- Thermal design approach
 - Isolate mounting collar from cartridge tube heat load
 - Increase front flange thickness to wick heat away from braze area
Thermal Analysis

• Major goals
 – RTD temp < 90°C
 – Heat flow to ISP <100W
 – Minimize braze temperature
• Assess isothermal performance for isothermal PIs
• Assess gradient performance for gradient PIs

Hilton Bellevue, Bellevue, WA
Development Testing

- SCA mounted into a commercial furnace
 - Different heating profile than LGF
 - Heated tube to 1280°C, and head to 125°C
 - Pressurized inside SCA to 125 psia using helium
 - Verified leak rate He < 10^{-8} sccs
 - Measured data compared to modeled
Updated Braze Process

- Original design used BAg-8 braze
 - Required copper coating for wettability
 - Eutectic liquid temperature of 1435°F (779°C)
 - Used a thermal profile with a hold below the liquid temperature
 - Resulted in a few unsuccessful brazes
- Redesign used BAG-13
 - Has a solidus temperature of 1420°F (771°C) and a liquid 1640°F (893°C)
 - Does not require a copper coating
 - Used a no-hold thermal profile
 - Has resulted in a number of successful brazes
Original BAg-8 Braze Profile
Updated BAg-13 Braze Profile
Summary

• SCA project started with an inherited design:
 – Design was at CDR level, but limited development testing had been done. Also a SCA had never been built.
• During build-up of first SCA numerous problems were encountered
 – Unreliable braze process
 – Not enough internal volume for instrument integration
• Launched into a redesign activity to improve design
 – Designed a reusable SCA to help save costs
 – Thermal analysis helped guide the design to meet temperature requirements
 – Development braze program selected a new braze filler metal and process
• Successfully built up a SCA and performed development tests
 – Heated SCA to off-nominal temperatures
 – Over pressurized the internal with helium
 – Maintained helium leak rate <10^-8 sccs
Future Work

- Starting qualification testing program
- 1st Principle investigator (PI) integration and testing
 - Fall 2015
 - Experiment launch summer of 2016
- 2nd PI Integrated Design Review (IDR)
 - September 2015
- 3rd PI IDR
 - Late 2015/early 2016
- 4th PI Requirements Definition Review (RDR)
 - August 2015
References