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NASA Research Announcement (NRA) - 2013
Macromolecular Biophysics

Growth Rate Dispersion as a Predictive 

Indicator for Biological Crystal Samples Where 

Quality Can be Improved with Microgravity 

Growth

• Experiment to be performed in the FIR LMM. 

• Test the hypothesis that the presence of growth rate dispersion 

in macromolecular crystals grown on the ground is an indicator 

of crystals that can be improved when grown in microgravity.

• Launches scheduled for February 2016 on SpaceX-10 (MB1), 

and 2019 on TBD (B1).
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Hauptman-Woodward Medical Research Institute (HWI)
Buffalo, New York 14203-1102 
Tel.: 716-898-8623; luft@hwi.buffalo.edu
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• Science Background and Hypothesis 
• Investigation goals and objectives
• Measurement approach
• Importance and reason for ISS
• Expected results and how they will 

advance the field 
• Earth benefits/spin-off applications

Increment 45/46 Science Symposium

Light Microscopy Module Biophysics -3 (LMM-B3)

7/15/2015 NASA/MSFC Laurel Karr     LMM-B3 3



Science Background and Hypothesis – 1/8
Science Background
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• Biological macromolecules make up the machinery, the instruction set, and the scaffold of life. They are

smaller than the wavelength of visible light, thus sophisticated techniques are needed to visualize them, and

through this process, understand how life works. A structural understanding helps to discern mechanisms;

once we understand how the machinery works, we aid, or more commonly impede that machinery through

appropriate pharmaceutical design. The principal means to visualize the structure of these macromolecules is

X-ray crystallography, a process that measures the diffraction of X-rays from ordered crystals to calculate the

atomic structure. The importance of this process is exemplified in over 12 Nobel Prizes awarded to discoveries

made from biological structures derived by X-ray crystallography.

• A limiting element to the process is the availability of high-quality, well-diffracting crystals. Quality is defined

as a crystal that provides X-ray diffraction data of sufficient completeness and detail (resolution) to see the

structure and hence understand the biology of the system. Biological macromolecules often take many days

to grow crystals. Growth in reduced acceleration (commonly termed microgravity) on an orbiting spacecraft

extends the physical quality of macromolecular crystals through a reduction in the mosaic spread (caused by

slight misalignments of the molecules in the crystal lattice and used as a measure of long-range order) and an

increase in crystal volume. Resolution (a measure of short-range order) is not directly affected by

microgravity, but can still benefit with the correct experimental design to exploit the demonstrated

improvements in long-range order. Microgravity growth can yield an improved quality crystal; however, not all

samples improve from microgravity growth.

• If we could predict which samples could be improved by crystal growth in microgravity, then the true

potential of this medium could be exploited in an efficient manner. Our experiment aims to enable this.
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Science Background and Hypothesis – 2/7
Science Background (cont.)

• Most biological processes, in particular those of health-related interest (both 
on the ground and in space), occur at the molecular level

• Pharmaceuticals are designed and work at this level
• Biological machinery (proteins, DNA, RNA, viruses, etc.)  at this level is smaller 

than the wavelength of light – we cannot observe them with microscopes

Definitions:
• Mosaicity

• A crystal can be thought of as an array of domains all slightly misaligned 
with each other. Perturbations to the misalignment are lumped together 
into the quantity called mosaicity. A highly mosaic crystal has many 
imperfections.

• Growth Rate Dispersion
• Individual crystals starting at the same size, all apparently subjected to 

identical growth conditions, can grow at different rates
• Quality

• A high quality crystal has low mosaicity and diffracts strongly to a high 
resolution



Original experiments investigating microgravity 
crystal growth (mosaicity)
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Microgravity:

Free floating, unsedimented. 
had consistently larger 
diffracting volume > 2 mm in 
each dimension (34 times 
larger on average)

Images to same scale.

Ground:

Sedimentation onto the 
bottom.  Clumping of crystals.

Previous studies on insulin

From STS-95.  Borgstahl, G.E.O., Vahedi-Fardi, A., Lovelace, J., Bellamy, H. & Snell, 
E.H. Acta Cryst, D57, 1204-1207 (2001).

7/15/2015 NASA/MSFC Laurel Karr     LMM-B3 7



0

20000

40000

60000

80000

100000

120000

140000

1.5 3.5 5.5 7.5 9.5 11.5 13.5 15.5

Resolution

In
te

n
s
it

y

ug #2

earth #1

0

0.005

0.01

0.015

0.02

0.025

1.5 3.5 5.5 7.5 9.5 11.5 13.5 15.5
Resolution

M
o

s
a
ic

it
y

 (
h
)

ug #2

earth #1

Microgravity Blue

Ground Red

Structural, short range 
improvement

Physical, long range 
improvement.

The worst microgravity 
and best ground crystal 
data are shown.

Larger is 
better

Smaller 
Is better

7/15/2015 NASA/MSFC Laurel Karr     LMM-B3 8



7/15/2015 NASA/MSFC Laurel Karr     LMM-B3 9



Relationship between growth rate 
dispersion and mosaicity

Small molecule studies have shown a direct relationship
between mosaicity and growth rate dispersion.

• Sherwood and Ristic (2001) see reduced mosaicity with
reduced growth rate dispersion for sodium chlorate,
potash alum and sodium nitrate.

• The same effect is also seen for sodium chloride
(Cunningham et al., 1991) and ammonium sulfate
(Meadhra et al., 1995).

• Larger molecules such as sucrose (Berglund et al., 1984)
and fructose (Johns et al., 1990) show dispersion.

• Growth rate dispersion studies for macromolecules have
been limited. Ovalbumin (Judge et al., 1995) and lysozyme
(Cherdrungsi, 1999) are two example cases.



• In small molecule studies X-ray data shows that 
growth rate dispersion is related to crystal mosaicity.  
The greater the growth rate dispersion the greater the 
mosaicity.

• Mosaicity dramatically improves in microgravity 
grown crystals.

• Microgravity crystals with reduced mosaicity can be 
used to increase the data signal-to-noise and hence 
resolution.

Hypothesis

• Growth rate dispersion is a predictive experimental 
technique for improvement in microgravity.  Crystals 
benefiting most from microgravity will be those that 
show most growth rate dispersion on the ground.
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LMM-B3 Investigation Goals and Objectives

Goals:

• Monitor growth rate dispersion of crystals grown on the ground and in microgravity, to 

determine if there is a correlation between the physical qualities of the resulting crystals 

with those measurements. 

• Use molecular biology techniques to alter the crystallization contacts and shift the 

growth rate dispersion properties of a single protein from low to high to test our 

predictive hypothesis. 

• Extend the study to a selection of good and poorly diffracting crystals on the ground and 

confirm that those displaying high-growth rate dispersion on the ground are those that 

are improved on orbit and generate improved structural data when their quality is 

exploited. 
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LMM-B3 Investigation Goals and Objectives

Objectives:

1. Produce closely related protein constructs that display different growth rate

dispersion. Measure the ‘attractiveness’ of each construct for modeling the

inter-particle forces, diffusion and convection.

2. Measure and compare growth rate dispersion on the ground and then in

microgravity.

3. Characterize the quality of both ground and microgravity grown crystals.

Sophisticated X-ray analysis along with X-ray structural data collection will be

used to characterize the resulting crystals.

4. Link the knowledge about inter-particle forces, measured acceleration levels,

calculated flow rates and the resultant X-ray analysis to develop tests that

can be carried out on the ground to predict those samples that would be

improved in microgravity.



We will be using a flight-hardened Commercial-
Off-The-Shelf (COTS) microscope

[pictured on next page]
and a

Macromolecular Biophysics sample module
[pictured later]

LMM-B3 Measurement approach
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Light Microscopy Module (LMM) in the Fluid Integrated Rack (FIR)

Measurement approach – 1/5
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LMM Implementation Philosophy

Payload Specific Hardware
• Sample Cell with universal Sample Tray

• Specific Diagnostics

• Specific Imaging

• Fluid Containment

Multi-Use Payload Apparatus
• Test Specific Module

• Infrastructure that uniquely meets 

the needs of PI experiments

• Unique Diagnostics

• Specialized Imaging

• Fluid Containment

FCF Fluids Integrated Rack
• Power Supply

• Avionics/Control

• Common Illumination

• PI Integration Optics Bench

• Imaging and Frame Capture

• Diagnostics

• Environmental Control

• Data Processing/Storage

• Light Containment

• Active Rack Isolation System (ARIS)

Payload specific and multi-user

hardware customizes the FIR in a

unique laboratory configuration to

perform research effectively.

Light Microscopy Module

Philosophy: Maximize the scientific results by utilizing the existing LMM 

capabilities. Develop small sample modules and image them within the 

LMM

Measurement approach – 2/5
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LMM-B3 Measurement approach – 3/5

Light Microscopy Module
(LMM)

LMM-B3 Sample Assembly 
drawing will contain up to 16 

square 50 mm capillaries - Snell
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Constructs in the laboratory
# Construct Yield per 6l of Broth

1 T4 lys Wildtype 150 mg

2 T4 lys WT* (C54T, C97A) ~20 mg

3 T4 lys M6I 88 mg

4 T4 lys I3P 40 mg

5 T4 Lys S44E WT* 85 mg

6 T4 Lys S44F WT* 53 mg

7 T4 lys E45A WT* 54 mg

54

97

6

3

44 and 45

(Produce closely related protein constructs that display different growth rate dispersion. 
Measure the ‘attractiveness’ of each construct for modeling the inter-particle forces, 
diffusion and convection).
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LMM-B3 Flow Chart of ISS Experiment
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LMM-B3         Importance and Reason for ISS

• Capsules dropping to earth after being lifted by balloon offer 10-2g to 10-5g over approx. 1 min. 
Sounding and sub-orbital rockets offer longer, 10-5g periods, e.g. 7 min in the case of Consort which 
reaches a height of 300km or 15 min in the case of MASER which reaches a height of 900km. 

• There are sudden negative acceleration forces upon return to earth and parachute recovery, and 
sounding rockets do not achieve the necessary microgravity time for the completion of our 
experiments.

• The nucleation and growth of macromolecular crystal samples is a slow process that takes place over 
a period of days. As convective flows are thought to negatively affect macromolecule crystal growth, 
an environment that will allow the formation of purely diffusive transport over a period of days to 
weeks is therefore sought.  

• Ramachandran et al. (1995) developed numerical models for flow and transport under different g-
levels. They determined that the classical solution to the vertically heated flat plate could be used to 
describe the velocity and mass transport in the vicinity of a macromolecule crystal. This gave a 
Sherwood number (the ratio of total mass flux transport to that under diffusive conditions) for 
protein crystal growth conditions of 1.0 at 10-5g, i.e. at this level the transport is diffusion limited. 

The International Space Station is currently the only platforms capable of providing the time and g-level 
environments required for macromolecule crystal growth experiments. 



Expected results and how they 
will advance the field

Long-duration protein crystal growth experiments on the ISS with photo 
documentation, and subsequent analysis of the comparisons between 1g 
and µg crystals, will enable a more complete understanding of why 
proteins and other macromolecules often form more perfect crystals  in 
microgravity than they do on earth

If hypothesized results are proven, tests can be developed to carry out on 
the ground to predict those samples that could be improved by growth in 
microgravity
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Earth benefits / spin-off applications

If it could be predicted which macromolecular samples could
be improved by crystal growth in microgravity, then the true
potential of this medium could be exploited in an efficient
manner

Structural biology of protein-protein complexes and integral
membrane proteins are currently a high NIH priority due to
their importance for systems biology, disease mechanisms and
structure-guided drug development.

Hauptman Woodward Medical Research Institute has a data
archive of millions of time-resolved crystallization images (from
over 14,000 different biological macromolecules) that could be
used to identify candidates likely to benefit from crystallization
in microgravity.
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Mission Success Criteria for LMM-B1 (DeLucas)

Success Level Accomplishment

Minimum Success

(1) In the first mission, crystallization of one or more crystals of a minimum of two proteins displaying different 
growth rate dispersion on the ground.
(2) Imaging data at a minimum of twenty time points capturing and recording initial growth.
(3) Images that capture both the start and cessation of growth.
(4) Successful extraction of at least six crystals from each successful sample and subsequent X-ray data collection.

Significant Success

(1) Crystallization of multiple crystals of more than two proteins displaying different growth rate dispersion on the 
ground.
(2) Imaging data at a minimum of forty time points
(3) Images that capture both the start and cessation of growth and capture a full range of different crystal sizes.
(4) Successful extraction of tens of crystals from all samples and subsequent X-ray data collection.

Complete Success
(1) Crystallization of multiple crystals of all samples flown.
(2) Capture of at least 75% of the planned imaging data.
(3) X-ray characterization of at least six crystals from each sample.
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Experimental control

• Initial observations will be controlled from the ground to locate the initial 
crystal positions.

• If a crystal is discovered to have moved out of frame, ground controlled 
observations will be repeated to reacquire the crystal location.

• Ability to move microscope position and focus to capture z slices of images 
across the whole depth of the cell (dependent on optics depth of field).

• Ability to accomplish this remotely (i.e. not at a NASA site) – crystallization 
experiments once the lag phase has past can take several days.



Environmental control and monitoring

• Acceleration data will be recorded within the LMM to identify deviations 
of at least 10 micro-g Residual Acceleration over frequencies of at least 0.1 
Hz to 10 Hz. If the LMM is hard attached to the rest of the ISS calculations 
of the acceleration at the LMM based on recording elsewhere are 
acceptable.

• Temperature will be maintained at the sample chambers under a specific 
temperature condition ranging from 12-24°C at +/- 1°C, the desired 
temperature TBD.

• Temperature data will be recorded at or close to the sample chambers at a 
minimum of 10 minute intervals with an accuracy of 0.1°C

• The experiment should be conducted during a period that minimizes low 
frequency g-jitter, i.e. avoiding planned reboosts or docking.



Post experiment storage

• Sample cells will be removed from the microscope and stored at the 
growth temperature at controlled or insulated conditions such that they 
remain within +/- 1°C of that temperature (TBD). Note, this could be the 
actual ISS temperature.

• Sample cells will be returned to earth while maintained within +/- 1°C of 
the growth temperature. They are not to be frozen after the experiment, 
this destroys the crystals.



In flight data

Images of the growth chamber and crystals are required during the 
experiment.

The following data are required:

• After experiment activation (filling or thawing) initial images of each 
sample chamber are required.

• During the location of initial crystals, real time or close to real time 
imaging is required to confirm crystal location.

• Images of the growing crystals are required but a subsection of those 
images at a sample rate TBD is permissible.

• Information on the microscope position to go with the images is required.

• A time stamp with each image received is required.



Post flight samples

Sample cells are to be returned to the ground for crystal extraction and the 
cells must allow extraction.

The following data and samples are required

• Timeliness: within 30 seconds of real-time during real-time operation 
mode to correlate accelerometer data and visual observations with 
onboard activities.

• Acceleration data over the mission duration covering deviations of at least 
10 micro-g Residual Acceleration over frequencies of at least 0.1 Hz to 10 
Hz.

• Temperature data during storage, observations, post observation and 
return to earth.

• Sample cells returned to the ground for crystal extraction

• A complete set of high-resolution images, identified by sample cell, 
objective, microscope position and time stamp when recorded.


