Technology Development and Trends
Liquid Rocket Propulsion

Mary Beth Koelbl
Deputy Director, NASA Marshall Space Flight Center
Propulsion Systems Department

AIAA Joint Propulsion Conference
July 2015
Advanced Manufacturing Enables Propulsion

Fundamental Additive Manufacturing M&P Development

Push
- Material Properties & NDE
- Standards & Specs
- Certification Rationale

Pull

Investment directly benefits prototype engine development and indirectly enables and facilitates technology across multiple current and future activities for NASA, DoD and industry.

Lean & Aggressive Development Philosophy

Parallel & Congruent Activities

Relevant Environment Testing

Building Foundational Additive Manufacturing Industrial Base

RP Engine

Methane Systems

RS-25

CCP

Upper Stage Engine

Advanced Manufacturing Demonstrator (AMD)

Stratasys

INCODEMA

LINEAR

GPM

Additive Manufacturing, Inc.

RTI Directed Manufacturing, Inc.
Reduction in Parts Count with Additive Manufacturing

Note: Part counts examples are for major piece parts and do not include bolts, nuts, washers, etc.
BACK-UP SLIDES
Technology Development – Rapid Fabrication of Regeneratively Cooled Nozzles

- Large scale freeform additive manufacturing processes being developed for channel wall nozzles
- Advanced abrasive water jet milling used to produce unique geometries for coolant channels
- Novel closeout techniques such as explosive bonding and hybrid additive manufacturing being investigated to rapidly reduce lead time and costs
Composite Nozzle Extensions for Deep Space Missions

- NASA continues to invest in high temperature carbon-carbon nozzles for upper stage deep space missions
- Developed domestic supply chain with modern material systems and continue to work with international partners
- Produced a series of 24” diameter nozzles that will be hot fire tested
- Developing methodology to certify and fly composite extensions
Advanced dynamic optical measurement techniques to significantly reduce instrumentation costs for component testing, real-time manufacturing process analysis, and engine testing.
The liner is printed using an astonishing 8,255 separate layers of this copper powder, which is sintered together one layer at a time to build up the final product. In all, it takes 10 full days and 18 hours to complete the printing process of this single part.
END
Game-Changing Aspects of Prototype Additive Engine

State of the Art for Typical Engine Developments

- DDT&E Time
 - 7-10 years

- Hardware Lead Times
 - 3-6 Years

- Testing
 - Late in the DDT&E cycle

- Engine Cost
 - $20 - $50 Million

- Applicability
 - Design for particular mission by a particular contractor
 - Often proprietary

Prototype Additive Engine

- DDT&E Time
 - 2-4 years

- Hardware Lead Times
 - 6 Months

- Testing
 - Testing occurs early in the DDT&E cycle

- Prototype Cost
 - $1-5 Million

- Applicability
 - Provide relevant data to multiple customers (SLS, Commercial partners, other government agencies)
 - Flexible test bed configuration can accommodate other’s hardware / design concepts
Advanced dynamic optical measurement techniques to significantly reduce instrumentation costs for component testing, real-time manufacturing process analysis, and engine testing.
The liner is printed using an astonishing 8,255 separate layers of this copper powder, which is sintered together one layer at a time to build up the final product. In all, it takes 10 full days and 18 hours to complete the printing process of this single part.