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. While robotic explorers have studied Mars for more than 40 years, NASA'’s path for the human exploration of Mars begins
in low-Earth orbit aboard the International Space Station. Astronauts on the orbiting laboratory are helping us prove many
of the technologies and communications systems needed for human missions to deep space, including Mars. The space
station also advances our understanding of how the body changes in space and how to protect astronaut health.

. Our next step is deep space, where NASA will send a robotic mission to capture and redirect an asteroid to orbit the
moon. Astronauts aboard the Orion spacecraft will explore the asteroid in the 2020s, returning to Earth with samples.
This experience in human spaceflight beyond low-Earth orbit will help NASA test new systems and capabilities, such as
Solar Electric Propulsion, which we’ll need to send cargo as part of human missions to Mars. Beginning in FY 2018,
NASA'’s powerful Space Launch System rocket will enable these “proving ground” missions to test new capabilities.

Human missions to Mars will rely on Orion and an evolved version of SLS that will be the most powerful launch vehicle
ever flown
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 NASA's Space Launch System, or SL S, is an advanced launch vehicle for a new era of
exploration beyond Earth’s orbit into deep space. SL S, the world’s most powerful
rocket, will launch astronauts in the agency’s Orion spacecraft on missions to an
asteroid and eventually to Mars, while opening new possibilities for other payloads
including robotic scientific missions to places like Mars, Saturn and Jupiter.

o SLSwill bethe most powerful rocket in history and is designed to be flexible and

evolvable
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NASA’s Mars landings

NI e The US space agency plans to send a new rover to Mars in 2020

® Previous landing e O e
sites for rovers & Phoenix :
and landers Landed: May 2008
Sizes nol
Fr Pacre “I‘kjﬂgz @
i s J Jul/Aug
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Viking1 @ Pathfinder*
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@ Opportunity Spirit
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Curiosity mission: .‘r

[ Study Gale Crater (154 km Launched: Nov. 26, 2011
diameter) for signs that life Weight: B899 kg
may once have existed Cost: $2.5 billion

O Look for clues about past and Designed to funciion o .
i i £ vaci Depioyed Sojourner rover
present habitable environments | for 2 years

Source: NASA AP




Mars Exploration Family Portrait

40: Mars Science Laboratory Curiosity
November 26, 2011
s 39: Phobos-Grunt L MissionitaleCrat 1,2: MARS 1M No. 1 / MARS 1M No. 2
November 8, 2011 ..‘_.‘ ! October 10 / October 14, 1960 %
Stranded in Earth orbit . Both destroyed during launch
38: Phoenix /ﬁ

August 4, 2007

3, 4,5, 8 MARS 2MV-4 No. 1 / Mars 1 / Mars 2MV-3 No. 1 / Zond 2
Landed, dug for water

October 24 / November 1 / November 4, 1962 / November 30, 1964

Broke up in Earth orbit / Radio failure en route / Stranded in Earth orbit / Radio failure en route

, 6, 7: Mariner 3 / Mariner 4
- = . s November 5 / November 28, 1964
37: Mars Reconnaissance Orbiter & — — - i Payload fairing failed to open / First flyby and picture return
— August 12, 2005 A > ' 3
Orbiting Mars

9, 10: Mariner 6 / Mariner 7
b - February 25 / March 27, 1969
g . - Both flew by, returned pictures
35, 36: Mars Exploration Rovers Spirit and Opportunity =
June 10 / July 7, 2003
Both landed on surface, Opportunity still in operation

, 12: Mars 1969 A / Mars 1969 B
i X L \ March 27 | April 2, 1969 4
. b o2 ! iéﬁ! Both destroyed during launch
34: Mars Express / Beagle 2 lander y L
esa June 2, 2003 A
Orbiting Mars, Beagle lost after separation

a"nd Opportinity Phoenix 2 13, 17: Mariner 8 / Mariner 9
: | " May 8 / May 30, 1971

Destroyed during launch / First probe to orbit Mars

& : 14,15, 16: Cosmos 419 / Mars 2 / Mars 3
33: Mars Odyssey - % ; Curlosity /{2 May 10 / May 19 / May 28, 1971
March 7, 2001 p- i P 4 Sy o : " Failed in Earth orbit / Lander crashed / Lander failed
Orbiting Mars > . .

18,19, 20, 21: Mars 4 / Mars 5 / Mars 6 / Mars 7
k = July 21 / July 25 / August 5 / August 9, 1973
) B ¢ Missed planet / Orbited planet / Lander failed (6 and 7)
32: Mars Polar Lander iy 2 £ 2 2 7
January 3, 1999 .
22, 23: Viking 1 / Viking 2
Crashedion/surface August 20 / September 9, 1975
Both landed on surface, returned data
31: Mars Climate Orbiter = NASA, Roseaumos, ESA, JA, i
December 11, 1998 e ey e T (imnm]unmmvu
Crashed due to imperial/metric unit mixup = CENES 1

24, 25: Phobos 1 / Phobos 2

- - July 7 / July 12, 1988
. ~ h —— Lost communication en route / Lost communication near Phobos
30: Nozomi
July 4, 1998 ’
Missed planet

=

26: Mars Observer
September 25, 1992

Lost communication near Mars
29: Mars Pathfinder

December 4, 1996
Landed on surface, deployed Sojourner rover

28: Mars 96

November 16, 1996

Destroyed during launch 27: Mars Global Surveyor
November 7, 1996
Orbited and returned data




@ Mars Science Laboratory Mission
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Curiosity Rover (Mars Science Lab) B C u rl O S I ty R OV e r

Weight: 800kg
)
Cameras and Width: 2.8m
laser 5-,.rsl.em
Mast height. 2.1m
. Arm oreach:: 2.2m

Robot arm and tool head 8

Launch: Cape Canaveral,
Nov. 26, 2011
Landing:
— S-curve maneuvers similar to
a piloted Shuttle landing

— Gale Crater (size of
Connecticut and Rhode Island
combined)

— Aug. 6, 2012
23-month mission

F




Mars 2020 Rover Mission
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MISSION TIMELINE

LAUNCH CRUISE/APPROACH ENTRY, DESCENT & LANDING SURFACE MISSION

e Atlas V ¢ 8 to 9-month cruise e MSL EDL system: guided entry ¢ Prime mission is one Mars year (669 days)

* Period: Jul/Aug 2020 * Arrive Jan/Mar 2021 and powered descent/Sky Crane » Latitude-independent and long-lived
« No changes from MSL * 25 x 20 km landing ellipse power source
(equivalent checkout ¢ Access to landing sites +30° ¢ Ability to drive out of landing ellipse
capability, etc.) latitude, <= 0 km elevation « Direct (uplink/downlink) and relayed
¢ ~950 kg rover (downlink) communication
¢ Technology enhancements under ¢ Fast CPU and large data storage

* EDL in work consideration



Launch Vehicle
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Launch=11/26/2011

: Mars at Launch
Arrival= 08/06/2012 o TCM-1
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High-
Resolution
Self-Portrait
by Curiosity
Rover Arm
Camera on
Sol 84 (Oct.
31, 2012)
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visible descent imaging

Lander Vision System

camera “'
Inertlal .lllm_nll_—lilfrm‘nml"-j :
Measuring S it —
| o
Unit T
flash
lidar
processor
Velocimetry

Terrain Relative Navigation image feature tracking
image landmark matchin T
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i DN
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- i o Detection S—__ . .
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position: 100m
velocity: 20cm/s
altitude: 10cm
hazards: 50cm
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Engineers and scientists are working hard to devel op the technologies
astronauts will use to one day live and work on Mars, and safely
return home from the next giant leap for humanity.



Martian Dust Storm
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Martian Dust Storm Activity
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 Top layer of the lunar regolith is
comprised of dust

 Lunar dustis an abrasive powder
that clings to space suits, robots,
and virtually all machinery

* Apollo 12, November 1969:

— Atotal of 3 hours, 31 minutes
were spent on the lunar surface
before the LM ascent engine
fired for liftoff

— Lunar dust tracked into the LM
became a problem

— Since the dust became
weightless after liftoff from the
Moon, the astronauts had
trouble breathing without their
helmets.
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Martian dust devil (left) and dust devil
tracks (below) photographed from orbit




@ Martian Dust Environment
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» Estimates from optical data:
Average dust particle in the
Martian atmosphere: 1.5 ym In
diameter i

« Average particle size changes with @S Eus S e
dust storm activity: L
—2001: Derived particle data ranged

from 2to 5 um

e Data from Ml on Spirit &
Opportunity (Landis et al 2006)

— Suspended atmospheric dust: 2-4 ym

— Settled dust uploaded by wind,
diameter: <10 um

— Saltating particles: < 80 um

 Particle in soil (Ml on Spirit on
Scamander crater) ~ 220 um




Electrodynamic Dust Shield

 With the EDS, Particles are
removed by applylng a multi-
phase traveling electric field
to electrodes that are
embedded in the surface

* Electrodes:
— Thin wires on opaque surfaces
— CNT electrodes on fabric
— Transparent, flexible electrodes
on transparent surfaces for
optical devices, windows, visors
« Applications developed:
— Solar panels
— Optical systems
— Thermal radiators
— Flexible films
— Fabrics

Kennedy Space Center




HiHE

Applied signal

Input frequency: 10 Hz

Amplifiers Three-phase electrodynamic
dust shield

Input voltage: V,,=0.5to 3.0kV

srnational
[ @ J R

Three-phase dust shield with indium tin
oxide transparent electrodes on a film
(top) and glass substrate (bottom)



EDSfor Optical Systems
wwmeces HIgh Vacuum Testing

o

(a) (b)

Transparent EDS coating on glass (a) before and (b) after dust removal at vacuum. Dust removal
efficiencies are greater than 99%.



Solar Panel Response
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3.0 1 :
| Solar panel response to dust loading and removal
28+
76 /|Dust Deposition| S e e e g p—
24 Tl
2.2 - -
2.0 - __ ;
n 1.8—7’/\' !
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Solar panel response to 20 mg, 50-75 um JSC-1A dust deposition and
removal under high vacuum conditions. Removal was accomplished
using Dust Shields of four different spacings.”

* Calle, C.I., C.R. Buhler, J.L. McFall, and S.J. Snyder, “Particle removal by electrostatic and dielectrophoretic
forces for dust control during lunar exploration missions,” Journal of Electrostatics 67, 89-92 (2009)



@ Reduced Gravity Flight Experiments
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/

e EXxperiments were
performed under lunar and
Martian gravity

 Four dust containment
boxes with metal filters
were used for each RGF
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« The EDS has been extensively tested
— In the laboratory under simulated lunar and
Martian conditions:
— On areduced gravity flight at lunar and
Martian gravity
« Aflight experiment is being developed to
fly on ISS as part of the Materials
International Space Station experiment
— MISSE is an external platform for space
environmental effects
— Will expose experiments to the ram, wake,
zenith, and nadir directions

— Our payload will face the wake direction, to
expose the EDS panels to the space
environment most closely resembling the
lunar environment

|SS Experiment
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@ Payload Concept




Mars Resource Utilization
Demonstration

* Instrument package for
demonstration on how to live off
the land

 NASA intends to include an in-situ
resource utilization (ISRU)
experiment on its new Mars rover
that would pull carbon dioxide from
the planet's atmosphere, remove
dust and other contaminants and
prepare the gas for chemical
processing into oxygen.

* Oxygen: For use in propulsion, life
support, power systems




@ Living Off the Land
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« NASA's ISRU Project:
production of

— mission consumables

— surface construction

— manufacturing and repair
— space utilities and power

 Oxygen, methane, and water
production from Martian
atmospheric gas requires prior
dust removal

« Electrostatic Precipitator that :
works at 1/100 of an ISRU plant for vehicle
atmosphere propellant production




New Energy Storage Devices
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Current missions: Hubble Space Telescope

« Nickel-hydrogen (Ni-H,)

« Charge-use cycle of
97 minutes

* Reliable
« Deep discharge capability
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International Space Station

« Nickel-hydrogen (Ni-H,)

» Charge-use cycle of
90 minutes

» EXxpected replacement to
lithium in 2017

e One lithium ORU to
replace two nickel-hydrogen
ORU’s
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Curiosity/Mars Science Laboratory

 Lithium

» Charge-use cycle
multiple times per day

* Peak power demands
exceed MMRTG power
Source
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Graphene-based
ultracapacitors:

 High power densities
 High energy densities

Energy density (Wh/kg)

1000

100

10

0.1

0.01

Graphene-Based Supercapacitors

. Graphene-Based |
Batteries Uit it
Rk racapacitors
1"'second
10 hours Ultracapacitors
Capacitors
10 100 1000 10000
Power density (W/kg)

Energy and power density
comparison for batteries,
conventional ultracapacitors, and
the expected performance of
graphene-based ultracapacitors.
Charging times are shown in blue.



Comparison of LSG, AC, Thin-film LI
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» The plot shows the energy density and power density of the stack for all the
devices tested (including current collector, active material, electrolyte and
separator).

= Additional features: flexible, lightweight, current collector free and binder free



@ Cycling and Shelf-Life
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Space Applications

 Higher power density will enable a new
class of operations

* Potential for much wider temperature
operation: carbon melting point (4900K)

* Increased safety-margin due to reduced
fire and toxicity risk

 In-situ resource available from regolith or
waste stream



Mission Concept

MARS SCIENCE LARDBATIEY, adg

"CURrRIOSITY"
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¢

* GRUISE STAGE / NG

o ENTRY, DESCENT, LannG L

o SURFACE (PERATIONS


https://www.youtube.com/watch?v=P4boyXQuUIw&feature=player_detailpage

The Team

 NASA Team:
e Paul J. Mackey
 Michael R. Johansen
 Michael D. Hogue, Ph.D.
e James Phillips Il
« UCLA Team:
e Richard Kaner, Ph.D.
 Maher El-Kady, Ph.D.



BACK UP SLIDES



KSC's Sensor Array
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ELECTROMETER

ION CURRENT SENSOR

ELECTRIC FIELD SENSOR

» Electrostatics Sensor Array instrument shown in possible location on Mars rover
e Instrument may be used in future Mars mission

» Able to identify differences in some properties of the minerals in the regolith

« It will aid in determination of places to deploy other instruments
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