OLED Technology Evaluation for Space Applications

Helen Neighbors¹, George Salazar¹, Glen Steele¹, Kalluri R. Sarma², John Schmidt², John Wiggs³, Yaritza Mejias-Rolon³

¹NASA Johnson Space Center, ²Honeywell Aerospace – Advanced Technology, ³Honeywell Aerospace – Human Space Applications

AIAA Space 2015, 31 August - 2 September, 2015
Pasadena, California
Agenda

• Introduction
• Role of Displays in various Space Missions
• Display Technology Requirements for Space Applications
• AMOLED Technology Assessment
• Physical and Functional Improvements Recommended for the Use of AMOLED in Space Platforms
• Comparison of AMOLED Display Technology Against LCD Display Technology
• Conclusions and Recommendations
Introduction

- Significant commercial advancements in Organic Light Emitting Diode (OLED) display technology
 - OLED offers better performance than LCDs
 - Emerging applications due to flexible display screens
- Potential for next generation display technology for space applications
 - Evaluation of active matrix OLED (AMOLED)
 - Tested against various mission environmental requirements
Role of Displays in Various Space Missions

- Habitable volume limits the surface area suitable for incorporation of displays and controls for human rated spacecraft.
- Apollo-era displays consisted of many physical controls (switches, electro-mechanical indicators, rotary selectors, backlit indicators).

- Crew’s situational awareness shaped by the state of these controls.
- Available mature technology impacts spacecraft display and control design.
- Apollo Flight computer’s display consisted of:
 - Backlit push buttons and indicators
 - Alpha numeric gas discharge tubes
Role of Displays in Various Space Missions

Space Shuttle STS-101 Cockpit with MEDS Upgraded Displays
Role of Displays in Various Space Missions

• Space Shuttle relied on many physical controls similar to that of the Apollo-era (electro-mechanical, rotary selectors and switches, etc.)
 - Monochrome CRT based for cockpit displays
 - CRTs used for viewing CCTV motion imagery (Initially black & white, later upgraded to color)
• Advances in LCD technology made it possible to eliminate a number of electro-mechanical indicators and replace monochrome CRTs with daylight-readable color-capable LCD panels in the Multifunction Electronic Display Systems (MEDS) upgrade
• Shuttle Program introduced use of Laptop computers with LCD displays
Role of Displays in Various Space Missions

- Apollo and Space Shuttle vehicles were launched as complete vehicles and their display and control capabilities were not expected to evolve during their mission.
- International Space Station’s (ISS) displays and controls have evolved as elements added to the vehicle.
 - Technology advances in computers, networks and display panels made it possible to build display and control systems that evolve.
 - Today, ISS’s displays and controls are primarily laptop computers and video monitors that utilize LCD panel display technology.
Role of Displays in Various Space Missions

• Future human rated spacecraft will require multi-function displays
• LCD or AMOLED technology, in combination with computational and networked resources will aggregate functionality:
 ▪ Monitoring vehicle status
 ▪ Viewing checklists and maintenance procedures
 ▪ Commanding vehicle systems
 ▪ Communicating with other vehicles and terrestrially located personnel
 ▪ Providing social interaction with family
 ▪ Consulting with medical experts
 ▪ Training and entertainment
Display Technology Requirements for Space Applications

• Typical Optical Requirements
 ▪ To be tailored for the specific application

<table>
<thead>
<tr>
<th>Optical Requirement</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over Environment</td>
<td>Temperature range from -25°C to +65°C</td>
</tr>
<tr>
<td>Chromaticity</td>
<td></td>
</tr>
<tr>
<td>Luminance</td>
<td>0.1fL to 100fL (1000:1 dimming ratio)</td>
</tr>
<tr>
<td>Contrast Ratio</td>
<td>Dark Ambient 20:1; High Ambient 3:1</td>
</tr>
<tr>
<td>Luminance Non-Uniformity</td>
<td><40%</td>
</tr>
<tr>
<td>Light Leakage</td>
<td>no discernible light leakage</td>
</tr>
<tr>
<td>Reflectivity</td>
<td>2.2% specular reflectance; 0.25% diffuse reflectance</td>
</tr>
<tr>
<td>Long Term Image Retention</td>
<td>No long term image retention is allowed</td>
</tr>
<tr>
<td>Response Time</td>
<td>Transition from any gray level to any other gray level within 17ms</td>
</tr>
</tbody>
</table>

Chromaticity at Design Eye Position

<table>
<thead>
<tr>
<th>Color</th>
<th>u'</th>
<th>v'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>0.385</td>
<td>0.540</td>
</tr>
<tr>
<td>Green</td>
<td>0.010</td>
<td>0.570</td>
</tr>
<tr>
<td>Blue</td>
<td>0.200</td>
<td>0.075</td>
</tr>
<tr>
<td>White</td>
<td>0.200</td>
<td>0.490</td>
</tr>
</tbody>
</table>

Chromaticity Variance

<table>
<thead>
<tr>
<th>Color</th>
<th>Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>0.03</td>
</tr>
<tr>
<td>Green</td>
<td>0.03</td>
</tr>
<tr>
<td>Blue</td>
<td>0.08</td>
</tr>
<tr>
<td>White</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Display Technology Requirements for Space Applications

- Typical Environmental Requirements
 - To be tailored for the specific application

<table>
<thead>
<tr>
<th>Environmental</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature range</td>
<td>-25° C to +65° C</td>
</tr>
<tr>
<td>Ambient Pressure</td>
<td>Ambient pressure environment ranging from 1.93E-6 psi (1 x 10E-4 torr) to 15.2 psi (786.1 torr) for not less than 144 hours</td>
</tr>
<tr>
<td>Humidity</td>
<td>Humidity test in accordance with MIL-STD-810 Method 507.4</td>
</tr>
<tr>
<td>Random Vibration</td>
<td>Composite of > 10 Grms</td>
</tr>
<tr>
<td>Acceleration</td>
<td>20 G constant acceleration for 5 minutes in each direction for each axis</td>
</tr>
<tr>
<td>Shock</td>
<td>20 G terminal sawtooth shock pulse of 11ms duration two times in each axis, as shown in Figure 30 (MIL-STD-810, Method 516, Procedure 1)</td>
</tr>
<tr>
<td>Ozone</td>
<td>Operate after exposure to 3 to 6 ppm, total oxidant concentrations may reach 60 ppm for 1 to 3 hours in any 24 hour period</td>
</tr>
<tr>
<td>Fungus</td>
<td>Operate after exposure to requirements specified in MIL-HDBK-454, requirement 4, Fungus Inert Materials, Table 4-I Group I</td>
</tr>
<tr>
<td>Sand & Dust</td>
<td>Operate after exposure to 140-mesh silica flour with particle velocity up to 500 feet per minute and a particle density of 0.25 grams per cubic feet (MIL-STD-810F, Method 510.4, Procedure 1)</td>
</tr>
<tr>
<td>Salt Fog</td>
<td>Operate after exposure to salt fog test per MIL-STD-810F, Method 509.4, with 4 alternating 24 hour periods of salt fog exposure and drying periods</td>
</tr>
</tbody>
</table>
AMOLED Technology Assessment

- Test Articles
 - Two 4.3” AMOLED displays
 - AZAMOLED043A
 » Non-touch screen
 • AZ Displays, Inc.
 - AZAMOLED043A-T
 » Touch screen
 • AZ Displays, Inc.

- Technology Assessment
 - Thermal Performance
 - Chromaticity and Emission Spectra
 - Viewing Angle
 - Image Retention
 - Environmental Performance Testing
 - EMI Testing
 - Thermal Vac Testing
 - Radiation Testing

4.3” AMOLED Display Environmental Test Pattern
AMOLED Technology Assessment

• Thermal Performance
 - Excellent chromaticity performance over temperature; very little primary color shift
 - Normalized luminance changes over temperature; would need compensation to reduce secondary color shift over temperature
AMOLED Technology Assessment

- Chromaticity and Spectra
 - ~115% NTSC color space coverage
 - Saturated pure primary colors
 - Red, Green, Blue
 - Relatively narrow emission color peaks
 - Easily satisfies color space for typical high performance avionics color targets
AMOLED Technology Assessment

- **Wide Viewing Angle**
 - Symmetric luminance roll-off from any viewing angle
 - Supports varied mounting positions in the space craft
 - Forward panel, side panels, overhead panel or center pedestal mounting is possible
AMOLED Technology Assessment

- Superb Cold Temperature Performance: -40º C
 - Cold temperature heater is not needed
 - Instantly available dynamic response
 - No LCD-like sluggishness
 - Secondary colors may need temperature compensation, depending on color performance requirements
AMOLED Technology Assessment
Environmental Testing

- Electromagnetic Testing
 - Radiated Emissions (Hardware EMI noise emitted)
 - Radiated Susceptibility (Upset hardware)
 - Frequency Band
 » 30 MHz to 18 GHz at each V/M setting
 - At 25, 50, and 75 V/M
 - Test Results – PASSED both:
 - Radiation Emission Test
 - Radiation Susceptibility at all V/M levels
AMOLED Technology Assessment
Environmental Testing

- Thermal Vacuum Testing
 - Habitat Pressures: 10, 8 and 4 psi
 - Thermal Cycling at each habitat pressure
 - 1-Thermal Cycle from -20\(^\circ\) F to +120\(^\circ\) F
 - Rapid Depressurization
 - Ambient to vacuum
 - First @1 psi/min, and then at 2 psi/min
 - Optical Equipment Used
 - Colorimeter
 - Luminance Meter
 - Spectral Irradiance Meter
AMOLED Technology Assessment
Environmental Testing

• Thermal Vacuum Testing
 ▪ Test Results
 – No issues at the three different habitat pressures or rapid depressurization
 – For thermal *cycling*, the AMOLED is sensitive to temperatures
 » Luminance changed as current changed due to temperature
 » Color shift as well—7000K to 9000K
AMOLED Technology Assessment
Environmental Testing

- Proton Radiation Testing
 - Test Conditions
 - 600 rads(Si)
 » Total dose for 10 years inside ISS
 - 6K rads(Si)
 » Total dose for 10 years outside ISS
 - Test Results
 - At 600 rads(Si)
 » No issues
 - From 600 rads(Si) to 6K rads(Si)
 » Permanent degradation of display noted with no success of annealing it
Physical and Functional Improvements Recommended for the Use of AMOLED in Space Platforms

- Cockpit displays need AMOLED panels that range from 12” to 20”
 - AMOLED panel manufacturers currently target the profitable high-performance smart phone and large-area TVs
 - Current selection of AMOLED displays are either too small or too large to be viable for use as cockpit mounted displays
 - Smaller sized currently available OLED displays would be useful for:
 - Helmet mounted displays for space suits
 - Incorporation into windows as Heads Up Displays (HUD)
 - Mobile devices that crew could utilize at any location inside a cabin

- Space platforms could be enhanced by the incorporation of touch screen technology compatible with gloved and ungloved hands
Comparison of AMOLED Display Technology Against LCD Display Technology

<table>
<thead>
<tr>
<th>Category</th>
<th>LCD</th>
<th>OLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Luminance</td>
<td>Mature</td>
<td>Mature, better color saturation</td>
</tr>
<tr>
<td>Luminance</td>
<td>Mature and can always increase by applying more power to the backlight</td>
<td>Mature, but limited by OLED Technology, which continues to make rapid progress</td>
</tr>
<tr>
<td>Thermal Vibration</td>
<td>Mature</td>
<td>Mature</td>
</tr>
<tr>
<td>Vibration</td>
<td>Mature</td>
<td>Mature, no cell gap issues as with LCDs</td>
</tr>
<tr>
<td>Other Environments</td>
<td>Mature</td>
<td>Mature</td>
</tr>
<tr>
<td>Radiation</td>
<td>Mature, but components around LCD must be tested</td>
<td>More evaluation is needed, and components around OLED must be tested</td>
</tr>
<tr>
<td>Reliability</td>
<td>Mature and proven history in Space</td>
<td>Industry is rapidly improving operating life. Still testing in Space environments</td>
</tr>
<tr>
<td>Weight</td>
<td>Acceptable</td>
<td>Offers weight reduction and shallower display depth, via the removal of the backlight and associated heat sink</td>
</tr>
<tr>
<td>Power</td>
<td>Acceptable</td>
<td>Offers power reduction with the removal of backlight</td>
</tr>
</tbody>
</table>
Conclusions and Recommendations

• Moderate brightness levels
 - For display brightness levels in the vicinity of 120 fL, the AMOLED display may be a suitable candidate for human space flight use

• Extremely high brightness levels
 - OLED displays suffer from emitter life degradation and from thermal management challenges, particularly for long duration operation at high luminance levels
 - For extremely bright displays requiring 200 fL, and very long lifetimes, currently an LCD may be a better choice
Conclusions and Recommendations

- During EMI testing, the AMOLED display operated nominally with no anomalies detected.
- During TVAC testing, the AMOLED display is found to be sensitive to temperature changes.
 - AMOLED displays need a controlled *operating* temperature range to ensure luminance and color shifts are minimized.
 - A temperature compensation system designed into the OLED drive electronics would reduce color shifts due to ambient temperature variations.
Conclusions and Recommendations

- Proton radiation testing showed the AMOLED display is suitable for use inside a spacecraft when the total dose does not exceed 600 rads(Si)
 - When AMOLED displays are used externally, the display will begin to darken, as the total dose exceeds 600 rads(Si) and approaches 6K rads(Si), which represents 10-years of exposure outside the ISS
 - Permanently affecting its optical properties

- Heavy ion testing must be performed to determine suitability of OLED technology for use beyond low Earth orbital applications
Conclusions and Recommendations

• OLED technology has made impressive advances in lifetime and environmental robustness
 - AMOLED technology show promise for continued future advances in luminance, power efficiency, and lifetime
 - The evaluation results of an AMOLED display suggest that the technology’s benefits of low power, light weight and thin size, combined with excellent optical performance, makes OLED technology a potential candidate for future human space missions