A Case Study on the Application of a Structured Experimental Method for Optimal Parameter Design of a Complex Control System

Wilfredo Torres-Pomales
Langley Research Center, Hampton, Virginia
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA’s STI. The NASA STI program provides access to the NTRS Registered and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counter-part of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, providing information desk and personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question to help@sti.nasa.gov
- Phone the NASA STI Information Desk at 757-864-9658
- Write to: NASA STI Information Desk Mail Stop 148 NASA Langley Research Center Hampton, VA 23681-2199
A Case Study on the Application of a Structured Experimental Method for Optimal Parameter Design of a Complex Control System

Wilfredo Torres-Pomales
Langley Research Center, Hampton, Virginia
Acknowledgments

I would like to express my gratitude to the reviewers, Mr. Sixto Vazquez and Dr. Kenneth Eure of NASA Langley Research Center, and to Professor Resit Unal from Old Dominion University who introduced me to the field of Robust Design and Reliability Engineering.
Abstract

This report documents a case study on the application of Reliability Engineering techniques to achieve an optimal balance between performance and robustness by tuning the functional parameters of a complex non-linear control system. For complex systems with intricate and non-linear patterns of interaction between system components, analytical derivation of a mathematical model of system performance and robustness in terms of functional parameters may not be feasible or cost-effective. The demonstrated approach is simple, structured, effective, repeatable, and cost and time efficient. This general approach is suitable for a wide range of systems.
Table of Contents

1. Introduction .. 1
 1.1. Background Systems Concepts.. 1
 1.2. Overview of Content ... 2

2. System Under Study ... 2
 2.1. Plant ... 2
 2.1.1. Ideal Plant Model .. 2
 2.1.2. Laboratory Plant Model .. 3
 2.2. Controller ... 4
 2.2.1. Pendulum Controller ... 5
 2.2.2. Arm Controller ... 6

3. System Tuning Problem ... 6

4. Reliability Engineering Concepts ... 7
 4.1. Design of Experiments .. 7
 4.2. Response Modeling ... 8
 4.3. Optimal and Robust Parameter Design .. 9

5. System Tuning Approach ... 10
 5.1. Control and Noise Factors .. 11
 5.2. Stimulus Tracking Signal .. 12
 5.3. Response Metrics .. 12
 5.4. Experiment Design ... 13

6. Results ... 13
 6.1. Experimental Response Measures .. 13
 6.2. Response Model .. 13
 6.3. Optimal Parameter Design .. 15
 6.4. Verification ... 15

7. Final Remarks .. 18

8. References ... 19

Appendix A. MATLAB Script for Simulation Experiment ... 20
1. Introduction

This report documents a case study on the application of Reliability Engineering techniques to achieve an optimal balance between performance and robustness by tuning the functional parameters of a complex non-linear control system. The system of interest is the nonlinear pendulum control system reported by Torres-Pomales and Gonzalez [2]. The following subsection examines fundamental systems concepts and establishes a general context for the case study.

1.1. Background Systems Concepts

An engineered system is an entity with a purpose that is achieved by the interactions (i.e., relations) of its internal components (i.e., sub-entities) with each other and with the external environment (i.e., surroundings). The concept of system is circular and recursive such that, in general, both the environment and the components of a system are themselves systems. A system of interest (SOI) (or system in focus) is always contained within a larger super-system (or meta-system) consisting of the SOI and its environment.

The purpose (i.e., a goal) of an engineered system is defined in terms of the desired (i.e., intended) effect on its environment achieved by the flow of matter, energy, or information between the system and its environment. The system purpose is the basis for the specification of the desired functional and quality attributes (i.e., properties) of the system. The purpose of system components is to contribute to accomplishing the larger goal of the containing system. Thus, in general, there is a dependence (i.e., a relation) between a system and its environment. Avizienis et al. define system dependability as “the ability to deliver service that can justifiably be trusted” and also “the ability to avoid service failures that are more frequent and more severe than is acceptable” [1]. Dependability is a function of criticality, which is a measure of the importance (i.e., degree or strength of influence) of a factor in achieving a larger goal. The failure or variability in performance of a high criticality component can have a severe effect on the operation of the containing system. Dependability is also a function of trust (i.e., confidence) in the service delivered by a system. Assurance is the level of confidence in the properties of a system. This confidence is bounded by the various forms of uncertainty (both epistemic and aleatoric) that threaten the ability to achieve and ascertain the desired system properties. Uncertainties can originate internal to the system, or they can be external in nature and their effects propagate to the system (for example, at the inputs). Dependability is bounded by the ability to measure uncertainties and predict their effects on goals. In general, the ability to assess uncertainties and their effects diminishes as system complexity (i.e., number and variety of components, relations, and states) increases. The dependability of a component (or sub-system) can be seen as a measure of the level of associated risk (i.e., potential for unwanted outcome) with respect to the goals of the containing system.

Goals, dependencies, and uncertainties are interrelated. In engineering a system, we want to achieve a balance between performance (i.e., utility or value with respect to purpose) and robustness (i.e., insensitivity to uncertainties and undesired influences) in achieving the goals. The relation between goals and uncertainties is primarily determined by the dependencies defined in the system architecture and is a function of system parameters. Once a system architecture has been specified, we want to determine the combination of parameter values that results in the optimal balance between performance and robustness. For complex systems with intricate and non-linear patterns of interaction between system components, analytical derivation of a mathematical model of system performance and robustness in terms of functional parameters may not be feasible or cost-effective. Even if a model can be derived, closed-form solutions may not be possible. Without effective analytical means to determine the best combination of system parameters, the alternative option is experimentation. However, trial-and-error can be time consuming and the results can be unpredictable. We want a methodical, effective, repeatable, and cost and time efficient approach to tune the parameters of a system.
1.2. Overview of Content

The next section describes the system of interest, including the plant and the controller. This is followed by the system tuning problem statement. An overview of the Reliability Engineering concepts applied in this study is given. This is followed by a description of the approach used to tune the system. Detailed results are presented. Conclusions and final remarks end the report.

2. System Under Study

Figure 1 is the block diagram of the control system. The state of the plant X is controlled by the motor torque T_d. The system is designed to track the target arm position θ_d while maintaining control of the pendulum above the horizontal. The swing-up problem was not part of this study.

2.1. Plant

The plant consists of a motor which generates a torque τ, a vertical shaft, a horizontal arm with position and speed denoted θ and $\dot{\theta}$, and a freely rotating pendulum with position and speed denoted ϕ and $\dot{\phi}$. For this case study, it is assumed that the pendulum is always above the horizontal position, i.e., $\phi \leq \pm 90^\circ$. Two plant models were developed. The Ideal Plant Model does not include motor dynamics and assumes that the desired motor torque equals the applied torque (i.e., $T_d = \tau$). The Laboratory Plant Model includes model dynamics, friction, and other hard nonlinearities.

2.1.1. Ideal Plant Model

The ideal plant model was derived using the Euler-Lagrange equation. Variable m denotes the pendulum mass, J_1 is the moment of inertia of the shaft and arm relative to the shaft’s main axis, J_2 denotes the moment of inertia of the pendulum with respect to its center of mass, L_1 is the length of the arm, L_2 is the length of the pendulum, and g is the gravitational constant.
\[A\ddot{\theta} + B\ddot{\phi} + C = \tau \quad (1) \]

\[D\ddot{\theta} + E\ddot{\phi} + F + G = 0 \quad (2) \]

where:

\[A = J_1 + mL_1^2 + \left(\frac{1}{4}\right) mL_2^2\sin^2(\phi) \]
\[E = J_2 + \left(\frac{1}{4}\right) mL_2^2 \]

\[B = \left(\frac{1}{2}\right) mL_1L_2\cos(\phi) \]
\[F = -\left(\frac{1}{8}\right) mL_2^2\sin(2\phi)(\dot{\theta})^2 \]

\[C = -\left(\frac{1}{2}\right) mL_1L_2\sin(\phi)(\phi)^2 + \left(\frac{1}{4}\right) mL_2^2\sin(2\phi)(\phi\dot{\theta}) \]
\[G = -\left(\frac{1}{2}\right) mgL_2\sin(\phi) \]

\[D = B \]

2.1.2. Laboratory Plant Model

The laboratory plant model was developed starting from the ideal model and adds motor dynamics, friction, and some hard nonlinearities.

\[A_e\ddot{\theta} + B_e\ddot{\phi} + C_e = T_d \quad (3) \]

\[D_e\ddot{\theta} + E_e\ddot{\phi} + F_e + G_e + H_e = 0 \quad (4) \]

where:

\[A_e = A + J_m \]
\[B_e = B \]
\[C_e = C + a_m\dot{\theta} \]
\[D_e = D \]

\[E_e = E \]
\[F_e = F \]
\[G_e = G \]
\[H_e = \left(\frac{1}{2}\right) b_p\dot{\phi} \]

Here \(T_d \) denotes the torque developed by the motor, \(J_m \) denotes the rotational inertia of the motor, and \(a_m \) and \(b_p \) are viscous friction terms. In addition, the Laboratory Plant Model includes torque saturation \(T_{d,max} \), motor angular speed saturation \(\dot{\theta}_{d,max} \), static and dynamic motor friction \(T_{static} \) and \(T_{dynamic} \), and input torque dead zone \(T_{d,dead} \). In addition, scaling factors were used to more closely match the response of the model to the physical plant. Table 1 lists the model parameter values.
Table 1: Parameter Values for Laboratory Plant Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_1</td>
<td>0.04699 kg-m2</td>
<td>a_m</td>
<td>0.01932 N-m-s</td>
<td>dA_e</td>
<td>1.20</td>
</tr>
<tr>
<td>J_2</td>
<td>0.00780 kg-m2</td>
<td>b_p</td>
<td>0.01 N-m-s</td>
<td>dB_e</td>
<td>1.12</td>
</tr>
<tr>
<td>J_m</td>
<td>0.03790 kg-m2</td>
<td>$T_{d,\text{max}}$</td>
<td>9.8 N-m</td>
<td>dC_e</td>
<td>1.05</td>
</tr>
<tr>
<td>L_1</td>
<td>0.36 m</td>
<td>$\dot{\theta}_{d,\text{max}}$</td>
<td>28.27 rad/s</td>
<td>dD_e</td>
<td>1.12</td>
</tr>
<tr>
<td>L_2</td>
<td>0.28 m</td>
<td>T_{static}</td>
<td>0.10 N-m</td>
<td>dE_e</td>
<td>0.98</td>
</tr>
<tr>
<td>m</td>
<td>1.1564 kg</td>
<td>T_{dynamic}</td>
<td>0.08 N-m</td>
<td>dF_e</td>
<td>1.00</td>
</tr>
<tr>
<td>g</td>
<td>9.8 m/s2</td>
<td>$T_{d,\text{dead}}$</td>
<td>0.147 N-m</td>
<td>dG_e</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dH_e</td>
<td>5.50</td>
</tr>
</tbody>
</table>

2.2. Controller

Figure 2 illustrates the structure of the system controller. This is a dual-loop architecture in which the inner loop is responsible for the state of the pendulum and the outer loop generates pendulum position commands based on the target arm trajectory.

![Figure 2: Block Diagram of System Controller](image)

The system control laws were developed based on a Simplified Plant Model with scaling factors added to minimize the modeling error relative to the Laboratory Plant Model. The equations of the Simplified Plant Model are:

$$\ddot{\phi} = \ddot{H}_a + \ddot{G}_a T_d$$ \hspace{1cm} (5)

$$\ddot{\theta} = \ddot{Q}_a + \ddot{R}_a T_d$$ \hspace{1cm} (6)

where:
\[\bar{H}_a = -[A_a(F_a + G_a)]/(A_aE_a - B_aD_a) \quad C_a = 0 \]

\[\bar{L}_a = -D_a/(A_aE_a - B_aD_a) \quad D_a = D \]

\[\bar{Q}_a = B_a(F_a + G_a)]/(A_aE_a - B_aD_a) \quad E_a = J_2 + (\frac{1}{2}) mL_2^2 \]

\[\bar{R}_a = E_a/(A_aE_a - B_aD_a) \quad F_a = - (\frac{1}{8}) mL_2^2(\dot{\theta})^2 \]

\[A_a = J_1 + mL_1^2 \quad G_a = - (\frac{1}{2}) mgL_2(\phi) \]

\[B_a = (\frac{1}{2}) mL_1L_2 \]

The scaling factors in Table 2 were applied to the Simplified Plant Model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dA_a</td>
<td>1.35</td>
<td>dE_a</td>
<td>0.98</td>
</tr>
<tr>
<td>dB_a</td>
<td>1.00</td>
<td>dF_a</td>
<td>1.05</td>
</tr>
<tr>
<td>dC_a</td>
<td>0.00</td>
<td>dG_a</td>
<td>1.00</td>
</tr>
<tr>
<td>dD_a</td>
<td>1.00</td>
<td>dL_a</td>
<td>1.05</td>
</tr>
</tbody>
</table>

2.2.1. Pendulum Controller

The pendulum control law used the sliding controller theory presented by Slotine and Li [2]. The sliding surface is:

\[s = \left(\frac{d}{dt} + \lambda \right)^2 \left(\int_0^t \dot{\phi} \, dt \right) = \ddot{\phi} + 2\lambda \dot{\phi} + \lambda^2 \int_0^t \dot{\phi} \, dt \]

where \(\ddot{\phi} = \phi - \phi_d \). The desired motor torque is:

\[T_d = (- \bar{H}_a + V + W)/\bar{L}_a \]

with:

\[V = \ddot{\phi}_d - 2\lambda \dot{\phi} - \lambda^2 \dot{\phi} \]

\[W = -K \text{ sat}(s/\Phi) \]

\[\Phi = \varepsilon \lambda \]

\[\beta = \sqrt{\bar{L}_u/\bar{L}_l} \]
\[K = \beta [\hat{F} + \eta] + (\beta - 1)|\hat{u}| \]

\[\hat{F} = |\bar{H}_u - \bar{H}_l| \]

\[\hat{u} = -\bar{H}_a + V \]

Factors \(\bar{H}_u, \bar{H}_l, \bar{L}_u, \) and \(\bar{L}_l \) are upper (u) and lower (l) bounds for \(\bar{H} \) and \(\bar{L} \) of the Laboratory Plant Model. These factors are given by the corresponding factors in the Simplified Plant Model using the scaling factors in Table 3. The tuning parameters for the Pendulum Controller are \(\lambda, \varepsilon, \) and \(\eta. \)

Table 3: Scaling Factors for Error Bound Models

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dA_u</td>
<td>1.25</td>
<td>dA_l</td>
<td>1.60</td>
</tr>
<tr>
<td>dB_u</td>
<td>1.00</td>
<td>dB_l</td>
<td>1.00</td>
</tr>
<tr>
<td>dC_u</td>
<td>0.00</td>
<td>dC_l</td>
<td>0.00</td>
</tr>
<tr>
<td>dD_u</td>
<td>1.00</td>
<td>dD_l</td>
<td>1.00</td>
</tr>
<tr>
<td>dE_u</td>
<td>0.90</td>
<td>dE_l</td>
<td>0.98</td>
</tr>
<tr>
<td>dF_u</td>
<td>1.30</td>
<td>dF_l</td>
<td>0.85</td>
</tr>
<tr>
<td>dG_u</td>
<td>1.30</td>
<td>dG_l</td>
<td>0.80</td>
</tr>
<tr>
<td>dL_u</td>
<td>0.90</td>
<td>dL_l</td>
<td>0.90</td>
</tr>
</tbody>
</table>

2.2.2. Arm Controller

The arm control law is a PID law (Proportional, Integral, Derivative) with a nonlinear scaling factor to map the desired arm angular acceleration to the desired pendulum position.

\[\phi_d = [-K_1 \ddot{\theta} - K_2 \ddot{\theta} - K_3 \int_0^t \ddot{\theta} \, dt]/[(l_1/L_2)(L_1/L_2)(g/L_1)] \]

where \(\ddot{\theta} = \theta - \theta_d \). The tuning parameters for the Arm Controller are \(K_1, K_2, \) and \(K_3. \)

3. System Tuning Problem

The purpose of the control system is to move the arm following the trajectory given by the Target Arm Position \(\theta_d \) while balancing the pendulum. Ideally, the arm would perfectly track the target position with no effects due to variations in the characteristics of the plant. In real life, it is not possible to mitigate completely the effects of delays and functional coupling between system elements. Thus, the goal is to achieve an optimal balance between arm tracking performance and robustness. The robustness attribute
would account for plant modeling errors and variability in the characteristics of the physical plant. Note that swing-up of the pendulum is not within the scope of this arm-tracking problem. The applicable system initial conditions include those where the pendulum is above the horizontal position \((\phi \leq \pm 90^\circ)\) and the combined values of the plant state variables \(\phi, \dot{\phi}, \theta,\) and \(\dot{\theta}\) are within the stable region of the control system. It is also assumed that deriving a closed-form analytical derivation of optimal parameter settings is not feasible.

4. **Reliability Engineering Concepts**

Statistical techniques from the field of Reliability Engineering enable learning about and characterization of products and processes by means of systematic experimentation and modeling. The following sections present brief overviews of these topics.

4.1. **Design of Experiments**

Design of Experiments (DOE) theory is applied in the development of strategies to investigate the effects of independent controlled variables on system performance measured at selected variables of interest \([4] [5]\). The system of interest (SOI) is modeled as a black box to study the relations between Control, Input Signal, and Noise Factors (i.e., variables, parameters) and the Response Variable, as illustrated in Figure 3. The Noise Factors represent sources of system variability. In this model, the value of the response variable is a function of the Control, Input Signal, and Noise variables: \(y = f(X, S, Z)\). We seek efficient experiments that yield insightful knowledge about the system with as few resources as possible.

![Figure 3: High-Level Black-box Model of the System of Interest (SOI)](image)

In a basic experiment, we study the relation between the Control Factors (denoted \(x_1, x_2, \ldots, x_k\)) and the Response Variable (denoted \(y\)) while the Input Signal Factors are given and the Noise Factors are not controlled. An experiment consists of a series of test points in which the Control Factors are assigned particular values and the Response is measured. In a **two-level experiment**, the Control Factors are tested at two different values. For a quantitative variable, the levels are the extremes of the value range, denoted \(x_{\text{max}}\) and \(x_{\text{min}}\). For a qualitative variable, which has discrete values, the two levels are different values in the variable’s value set. A **Full Factorial (Experiment) Design** consists of all possible combinations of the control variables. This is a complete and systematic study of the design space defined by the Control Factors. A two-level full factorial design consists of \(2^k\) test points. A **Fractional Factorial Design** includes a subset of test points in a Full Factorial Design. There are \(2^{k-p}\) test points in a two-level fractional factorial design, which consists with \(k-p\) independently assigned control factors and \(p\) **confounded factors** that are
assigned values as function of the independent control factors.

In designing experiments, there is a tradeoff between the quality of data and the cost needed to generate it. In general, we want to maximize the accuracy of the characterization made possible by the data (i.e., the benefit) while minimizing the number of test points (i.e., the cost). The simplest way to increase the quality of information generated by an experiment is to increase the number of levels of the control factors. A three-level fractional factorial design consists of 3^{k-p} test points. The obvious problem with this approach is that the number of test points (and thus, the cost of the experiment) increases exponentially. A **Central Composite Design** (CCD) consisting of full or factorial experiment portion, a center portion, and an axial portion offers a more favorable tradeoff between quality and size of an experiment [6]. Figure 4 illustrates the structure of a two-factor CCD experiment. The values -1 and +1 are standardized representations of the variables values, x_{min} and x_{max}, respectively. In this figure, the four points at the corners of the box are the factorial portion of the experiment: ($\pm 1, \pm 1$). Point (0, 0) is the central portion. The points at the ends of the central axes (0, ±α) and (±α, 0) are the axial portion. Notice that this is five-level experiment with the control factors taking values 0, ±1, and ±α. When α = 1, the experiment is called a **Face-Centered Design** and the factors take only three possible values: 0 and ±1. The number of test points in a CCD experiment is $2^{k-p} + 2k + 1$.

![Figure 4: Structure of a Central Composite Design (CCD)](image)

4.2. Response Modeling

We want to use the results of an experiment to generate a mathematical model of the relation between the control factors x and the response variable y. Here, we consider only polynomial models. A two-level experiment that tests each factor only at two values contains enough information to build a linear model. In addition to the direct relation between each control factor and the response variable, we want to consider possible interactions between control factors. The general expression for a **linear polynomial model** with two-factor interaction terms is:

$$y = b_0 + \sum_i b_i x_i + \sum_i \sum_j b_{ij} x_i x_j$$ \hspace{1cm} (9)

where $1 \leq i \leq k$, $1 \leq j \leq k$, and $i \neq j$. If the variables are assigned values in the ±1 as in Figure 4, the
magnitude of the coefficients b_i is a measure of the strength of the effect (and hence, importance) of the corresponding factor x_i or interaction $x_i x_j$. Note that higher-order interactions are possible, but as a rule of thumb, the strength of interactions decreases as their order (i.e., number of interacting factors) increases. For a three-level experiment such as a CCD, the system response can be modeled with a second-order polynomial.

$$y = b_0 + \sum_i b_i x_i + \sum_{i,j} b_{ij} x_i x_j + \sum_i b_{ii} x_i^2$$ (10)

This model can achieve better accuracy for systems with non-linear responses.

The basic relation between modeling and experiment design is that high-order models can achieve better accuracy but require experiments with higher granularity and, thus, higher cost. We need models that have adequate fidelity for the intended use at a reasonable cost. Analysis of the application and careful judgment are required to determine the best combination of experiment design and response model.

4.3. Optimal and Robust Parameter Design

Once a model has been developed, an optimization tool can be used to determine the combination of control factors that results in the best system response. There are three categories of optimization problems: the-smaller-the-better, the-larger-the-better, and the-closer-to-nominal-the-better (i.e., as close as possible to a target). The quality of system performance is determined not only on achieving the desired target value under ideal conditions, but must also take into accounts the effects of variability in uncontrolled noise factors. To achieve a high quality system design, both the mean and the dispersion in system performance must be controlled. An optimal parameter design achieves the best balance between performance and robustness (i.e., insensitivity to variability). For this, we need a parameter optimization approach that can account for the mean value \bar{y} and deviation σ_y of the system response. One approach to this is the use of Dual Response Surfaces, in which models are developed for the mean response and the standard deviation, and an optimizer is used to minimize the deviation with a constraint on the error of the mean response relative to the desired target [7]. Another approach described below is to optimize signal-to-noise ratios, which is the approach used in the case study reported here.

To enable a robust parameter design, the experiment must generate data suitable for the characterization of the effects of the noise factors z (see Figure 3). Note that the categorization of factors as either control or noise can be a matter of judgment based on the goals of the parameter design activity. Factors with weak effects on the response variable could be classified as noise in order to simplify the design activity by focusing on the strongest control factors. Because of this, it is possible that some noise factors are controllable in an experiment and others may really be uncontrollable. For simulation-based experiments such as the one considered in the case study reported here, the set of controllable noise factors may be larger than for real physical experiments. Figure 5 illustrates the high-level structure of an experiment intended to characterization and optimization of system performance and robustness. The inner and outer arrays are independent experiments for control and noise factors as described in preceding sections. The complete outer array experiment is executed for each test point of control factors in the inner array. A response measure is made for every test point of control and noise factors, and robustness measures (such as mean response and deviation) are made by combining the results of a complete noise factors experiment for a particular control factors test point.

The signal-to-noise ratio is a robustness measure intended to capture with a single metric both the deviation of the average response from the target response y_m and the dispersion of the response. The mean square deviation of the response is given by:
\[\Delta_{\text{msd}} = (\bar{y} - y_m)^2 + \sigma_y^2 \]

(11)

The signal-to-noise ratios for the optimization problems of the-smaller-the-better, the-larger-the-better, and the-closer-to-nominal-the-better are given in Table 4. This robustness measure is computed for each test point of the inner array in Figure 5. At the completion of the experiment, a model can be built to relate the control factors to the signal-to-noise ratio SN. A control factor optimization based on the maximization of the signal-to-noise ratio gives the system configuration with the best balance of performance and robustness.

![Figure 5: Structure of Robust Parameter Design Experiment](image)

Table 4: Formulas for Signal-to-Noise Ratio

<table>
<thead>
<tr>
<th>Case</th>
<th>Signal-to-Noise Ratio (SN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>the-smaller-the-better</td>
<td>-10 \log_{10}[(1/r) \sum y_i^2]</td>
</tr>
<tr>
<td>the-larger-the-better</td>
<td>-10 \log_{10}[(1/r) \sum (1/y_i^2)]</td>
</tr>
<tr>
<td>the-closer-to-nominal-the-better</td>
<td>10 \log_{10}[\bar{y}^2/\sigma_y^2]</td>
</tr>
</tbody>
</table>

5. System Tuning Approach

This section describes the elements of the approach followed to tune the parameters of the control system. This case study was intended as a proof of concept and demonstration, and as such, the tuning problem was scoped to be representative but without excessive complexity. MATLAB was used to model the system and perform simulation experiments.
5.1. Control and Noise Factors

Table 5 lists the chosen control and noise factors. The baseline values for the noise factors are the nominal values given in Table 1. The baseline values for the Arm Controller and the Pendulum Controller factors where determined by trial-and-error to result in a stable system (i.e., small state perturbations are mitigated asymptotically) with the region of convergence for the pendulum state given in Table 6 (i.e., if the initial pendulum state is in this region, the plant state will converge the zero state \((\phi, \dot{\phi}, 0, 0)\), assuming \(\theta_d = 0\). The ranges of the control and noise factors were specified as percentages of the baselines values.

<table>
<thead>
<tr>
<th>Category</th>
<th>System Element</th>
<th>Factor</th>
<th>Baseline Value</th>
<th>Range (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Factors</td>
<td>Arm Controller</td>
<td>(K_1)</td>
<td>2.50</td>
<td>±50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(K_2)</td>
<td>2.00</td>
<td>±50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(K_3)</td>
<td>0.10</td>
<td>±50</td>
</tr>
<tr>
<td></td>
<td>Pendulum Controller</td>
<td>(\lambda)</td>
<td>20.00</td>
<td>±50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\epsilon)</td>
<td>0.017</td>
<td>±50</td>
</tr>
<tr>
<td>Noise Factors</td>
<td>Laboratory Plant Model</td>
<td>(L_1)</td>
<td>0.36</td>
<td>±15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(L_2)</td>
<td>0.28</td>
<td>±15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m)</td>
<td>1.1564</td>
<td>±15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial Pendulum Position (\phi) (°)</th>
<th>Range of Initial Pendulum Speeds (\dot{\phi}) (°/s)</th>
<th>Initial Pendulum Position (\phi) (°)</th>
<th>Range of Initial Pendulum Speeds (\dot{\phi}) (°/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+35</td>
<td>(-600, +30)</td>
<td>-35</td>
<td>(-30, +600)</td>
</tr>
<tr>
<td>+25</td>
<td>(-500, +190)</td>
<td>-25</td>
<td>(-190, +500)</td>
</tr>
<tr>
<td>+15</td>
<td>(-525, +340)</td>
<td>-15</td>
<td>(-340, +525)</td>
</tr>
<tr>
<td>+5</td>
<td>(-525, +500)</td>
<td>-5</td>
<td>(-500, +525)</td>
</tr>
</tbody>
</table>
5.2. Stimulus Tracking Signal

The chosen Arm Position Target θ_d, which corresponds to the Input Signal in Figure 3, was a ramp waveform from 0^0 to 90^0 with a 30^0/s slope from seconds 2 to 5. This is illustrated in Figure 6.

![Arm Position Target](image)

Figure 6: Arm Position Tracking Target

5.3. Response Metrics

Each experimental test point consisted of a 30 second run in which the control and noise factors were held constant and the stimulus signal was applied. Each run was divided into two phases: a transient phase (denoted l) from 0 to 15 seconds, and a steady-state phase (denoted u) from 15 to 30 seconds. The goal of the control system is to minimize the arm tracking error, defined as $e = \bar{\theta} = \theta - \theta_d$, while balancing the pendulum. The performance metrics are given in Table 7, where $T_l = 15$ seconds and $T_u = 30$ seconds. Note that an outer array experiment consists of m test points (see Figure 5), and the signal-to-noise ratio is computed based on the results of one outer array experiment (i.e., one inner array row).
Table 7: System Response Performance Metrics

<table>
<thead>
<tr>
<th>Experiment Segment</th>
<th>Phase</th>
<th>Description</th>
<th>Label</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Point (i, j)</td>
<td>Transient</td>
<td>Mean Square Error (MSE)</td>
<td>P₁</td>
<td>$\left(\frac{1}{T_1}\right) \int_{0}^{T_1} e^2 , dt$</td>
</tr>
<tr>
<td></td>
<td>Transient</td>
<td>Maximum Square Error</td>
<td>e₁²</td>
<td>max(e^2) for $0 \leq t \leq T_1$</td>
</tr>
<tr>
<td></td>
<td>Steady State</td>
<td>Mean Square Error (MSE)</td>
<td>Pᵤ</td>
<td>$\left(\frac{1}{T_u - T_l}\right) \int_{T_l}^{T_u} e^2 , dt$</td>
</tr>
<tr>
<td></td>
<td>Steady State</td>
<td>Maximum Square Error</td>
<td>eᵤ²</td>
<td>max(e^2) for $T_l \leq t \leq T_u$</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>Combined Error</td>
<td>E</td>
<td>$w_1 P_1 + w_2 e_1^2 + w_3 P_u + w_4 e_u^2; w_q = 0.25$</td>
</tr>
</tbody>
</table>

| Inner Array Row | Signal-to-Noise Ratio | SN | $-10 \log_{10} \left[\left(\frac{1}{m}\right) \sum_{j=1}^{m} E_j^2 \right]$ |

5.4. Experiment Design

The Inner Experiment Array for the Control Factors was a Central Composite Design for the five factors K_1, K_2, K_3, λ, and ε, which are denoted X_1, X_2, X_3, X_4, and X_5. The factorial portion of the Inner Array was a half-fractional factorial design with confounded factor $X_5 = X_1 X_2 X_3 X_4$.

The Outer Experiment Array for the Noise Factors was a half-fractional factorial design for the three factors L_1, L_2, and m denoted N_1, N_2, and N_3. The confounded noise factor was $N_3 = N_1 N_2$.

6. Results

As stated above, the experiment was performed using MATLAB. This section describes the experiment results and the parameter design with optimal signal-to-noise ratio.

6.1. Experimental Response Measures

Table 8 shows the results of the experiment. The combined error measures for each test point are given in the columns labeled E_1 to E_4. The signal-to-noise ratio for each row of control factors is given in the S/N column.

6.2. Response Model

The system response was modeled with a quadratic polynomial as in equation (10). Rather than including all the two-factor terms, an effects analysis was performed to identify the strongest interactions.
These were $X_1 X_2$, $X_4 X_3$, $X_2 X_4$, $X_3 X_1$, and $X_1 X_5$. The full model for the signal-to-noise ratio is:

$$SN = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_4 X_4 + b_{12} X_1 X_2 + b_{13} X_1 X_3 + b_{14} X_1 X_4 + b_{23} X_2 X_3 + b_{15} X_1 X_5 + b_{11} X_1^2$$

$$+ b_{22} X_2^2 + b_{33} X_3^3 + b_{44} X_4^4 + b_{55} X_5^5$$

The model coefficients were determined using regression. The values are given in Table 9.
Table 9: Coefficients for Model of Signal-to-Noise Ratio of System Response

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
<th>Coefficient</th>
<th>Value</th>
<th>Coefficient</th>
<th>Value</th>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>-93.4849</td>
<td>b_4</td>
<td>0.8526</td>
<td>b_{14}</td>
<td>0.1848</td>
<td>b_{22}</td>
<td>-0.3668</td>
</tr>
<tr>
<td>b_1</td>
<td>5.3657</td>
<td>b_5</td>
<td>0.0723</td>
<td>b_{23}</td>
<td>0.2449</td>
<td>b_{33}</td>
<td>-0.2291</td>
</tr>
<tr>
<td>b_2</td>
<td>0.7772</td>
<td>b_{12}</td>
<td>-1.3888</td>
<td>b_{15}</td>
<td>-0.1675</td>
<td>b_{44}</td>
<td>-0.6631</td>
</tr>
<tr>
<td>b_3</td>
<td>-0.1351</td>
<td>b_{13}</td>
<td>0.1913</td>
<td>b_{11}</td>
<td>-2.2001</td>
<td>b_{55}</td>
<td>-0.4123</td>
</tr>
</tbody>
</table>

6.3. Optimal Parameter Design

The optimizing compiler in Excel was used to determine the maximum signal-to-noise ratio within the range of the control factors using the model in the previous section. The optimal signal-to-noise ratio was $SN_{\text{optimal}} = -89.62$ with the parameter values given in Table 10.

Table 10: Optimal Values of the System Control Factors

<table>
<thead>
<tr>
<th>Control Factor</th>
<th>Value</th>
<th>Control Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_1</td>
<td>3.750</td>
<td>λ</td>
<td>27.826</td>
</tr>
<tr>
<td>K_1</td>
<td>1.035</td>
<td>ε</td>
<td>0.016</td>
</tr>
<tr>
<td>K_1</td>
<td>0.080</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.4. Verification

A brief experiment was run to verify the optimization results. For this verification experiment, the control factors were set as in Table 10 and noise factors were cycled as in the outer array in Table 8. The resulting signal-to-noise ratio was $SN_{\text{verification}} = -90.082$, which is a close match to the optimal value. Figure 7 to Figure 10 show the arm position tracking response for each verification test point. The steady-state oscillations are probably due to time delays in the system and the torque dead zone of the motor. Figure 11 shows the time history of all the plant state variables for the verification run with Noise Factors set to $(N_1, N_2, N_3) = (+1, +1, +1)$.
Figure 7: Verification Run for Noise Factors (N1, N2, N3) = (-1, -1, +1)

Figure 8: Verification Run for Noise Factors (N1, N2, N3) = (+1, -1, -1)
Figure 9: Verification Run for Noise Factors (N1, N2, N3) = (-1, +1, -1)

Figure 10: Verification Run for Noise Factors (N1, N2, N3) = (+1, +1, +1)
7. Final Remarks

This case study has demonstrated the application of Reliability Engineering techniques for optimal tuning of a complex control system. These techniques pertain to experiment design and mathematical modeling of the effects of control and noise factors on system performance and robustness. The applied approach enables the generation of insight into the relation between goals, dependencies, and uncertainties in a system. This is especially useful when complexity limits our ability to derive closed-form analytical expressions of system performance. The examined system contained many complex features such as a dual-loop control architecture, plant and controller state (i.e., memory), and a variety of nonlinear relations including quadratic, sinusoidal, and thresholds.

The demonstrated approach is simple, structured, effective, repeatable, and cost and time efficient. This general approach is suitable for a wide range of systems. The case study showed that the applied techniques are able to predict performance with high accuracy. Simulation-based experimentation in a flexible environment such as MATLAB enables quick turnaround in the generation, characterization, and tuning of virtual system prototypes.

There are several ways to expand the scope and depth of the case study presented here. Future case studies could increase the number of plant and controller parameters in the sets of control and noise factors. Also, instead of a single ramp input signal, a set of input signals could be applied such as steps, square waves, and sinusoidal waveforms. In that case the input signals would be handled as additional noise factors and considered in the design of the experiment outer array. This would expand the set of conditions in the
characterization of robustness. Additionally, in this case study, we chose to follow a trial-and-error approach to identify a stable system configuration that served as a baseline for the study of performance and robustness. In tuning a nonlinear system from a stability perspective, we are primarily interested in the size of the region of convergence. It should be possible to develop simple metrics for the size of the region of convergence. Given that, an experiment could be designed to explore the system design space and identify the proper tuning of parameters to achieve an optimal balance of stability, performance, and robustness.

8. References

Appendix A. MATLAB Script for Simulation Experiment

% Run Experiment on pendulum control system
% Notes:
% 1. Performance measure results are saved to file
% echo on;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Set filename for control and noise matrices
% => This one in MATLAB format
% => This one will be in Excel-loadable format
control_matrix_filename_TXT = 'control_matrix.dat';
noise_matrix_filename_TXT = 'noise_matrix.dat';

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Set filename for error matrix
% => This one in MATLAB format
% => This one will be in Excel-loadable format
E_matrix_filename_TXT = 'E_matrix.dat';
Pl_matrix_filename_TXT = 'Pl_matrix.dat';
Pu_matrix_filename_TXT = 'Pu_matrix.dat';
e2l_matrix_filename_TXT = 'e2l_matrix.dat';
e2u_matrix_filename_TXT = 'e2u_matrix.dat';

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Set filename for performance measures
% => This one in MATLAB format
perf_measures_filename_MAT = 'perf_measures_MAT';

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Set filename for signal-to-noise measures
% => This one will be in Excel-loadable format
% => Make entries TAB separated and include end-of-line character
% => Can also include headings (for rows, columns, table caption, etc.)
SN_measures_filename_TXT = 'SN_measures.dat';

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Set model information
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Specify model name
model_name = 'system_controller_n_plant_enhanced_v3p0';

% Run time (seconds)
t_final = 30.0;

% Transient interval duration (seconds)
t_Transient = 15.0;

% Set plant initial conditions
Initial_arm_angle_deg = [0 0.0];
Initial_arm_speed_deg_sec = [0 0.0];
Initial_pendulum_angle_deg = [0 0.0];
Initial_pendulum_speed_deg_sec = [0 0.0];
% Baseline controlled model parameters
k1_base = 2.50 ; % X1
k2_base = 2.00 ; % X2
k3_base = 0.10 ; % X3
lambda_base = 20.0 ; % X4
epsilon_base = 0.017 ; % X5
eta_base = 1.0 ; % This one will remain constant

% Baseline noise (uncontrolled) model parameters
J1_kg_m2_base = 0.04699 ; % This one will remain constant
J2_kg_m2_base = 0.007800 ; % This one will remain constant
L1_m_base = 0.36 ; % N1
L2_m_base = 0.28 ; % N2
m_kg_base = 1.1564 ; % N3

% Range percentage for model parameters (%)
 r_control = 50.0 ;
r_noise = 15.0 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Set experiment matrices
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Matrix for Controlled parameters
% X1, X2, X3, X4, X4, X5(= X1X2X3X4)
Control_matrix = ...
[
 -1, -1, -1, -1, +1;
 +1, -1, -1, -1, -1;
 -1, +1, -1, -1, -1;
 +1, +1, -1, -1, +1;
 -1, -1, +1, -1, -1;
 +1, -1, +1, -1, +1;
 -1, +1, +1, -1, +1;
 +1, +1, +1, -1, -1;
 -1, -1, -1, +1, -1;
 +1, -1, -1, +1, +1;
 -1, +1, -1, +1, +1;
 +1, +1, -1, +1, -1;
 -1, -1, +1, +1, +1;
 +1, -1, +1, +1, -1;
 -1, +1, +1, +1, -1;
 +1, +1, +1, +1, +1;
 0, 0, 0, 0, 0;
 -1, 0, 0, 0, 0;
 +1, 0, 0, 0, 0;
 0, -1, 0, 0, 0;
 0, +1, 0, 0, 0;
 0, 0, -1, 0, 0;
 0, 0, 0, -1, 0;
 0, 0, 0, 0, 1;]
0, 0, 0, 0, -1;
0, 0, 0, 0, +1] ;

% Matrix for Noise parameters
% N1, N2, N3(= N1N2)
Noise_matrix = ...
[-1, -1, +1;
+1, -1, -1;
-1, +1, -1;
+1, +1, +1] ;

% Performance Measure matrices
weights = [0.25, 0.25, 0.25, 0.25] ;
num_metrics = 4 ;
um_ctrl_rows = size(Control_matrix, 1) ;
num_ctrl_columns = size(Control_matrix, 2) ;
num_noise_rows = size(Noise_matrix, 1) ;
num_noise_columns = size(Noise_matrix, 2) ;
P1 = zeros(num_ctrl_rows, num_noise_rows) ;
Pu = zeros(num_ctrl_rows, num_noise_rows) ;
e2l = zeros(num_ctrl_rows, num_noise_rows) ;
e2u = zeros(num_ctrl_rows, num_noise_rows) ;
U = zeros(num_ctrl_rows, num_noise_rows, num_metrics) ;
E = zeros(num_ctrl_rows, num_noise_rows) ;
SN = zeros(num_ctrl_rows, 1) ;

pause

% Loop over Control Matrix
for i = 1 : num_ctrl_rows
 % Factor values for current control point
 k1 = [0 (k1_base * ...
 (1 + Control_matrix(i,1)*r_control/100.0))] ;
 k2 = [0 (k2_base * ...
 (1 + Control_matrix(i,2)*r_control/100.0))] ;
 k3 = [0 (k3_base * ...
 (1 + Control_matrix(i,3)*r_control/100.0))] ;
 lambda = [0 (lambda_base * ...
 (1 + Control_matrix(i,4)*r_control/100.0))] ;
 epsilon = [0 (epsilon_base * ...
 (1 + Control_matrix(i,5)*r_control/100.0))] ;
 eta = [0 eta_base] ; % This one remains constant

% Loop over Noise matrix
for j = 1 : num_noise_rows
 % Factor values for current noise point
 J1_kg_m2 = [0 J1_kg_m2_base] ; % This one remains constant
 J2_kg_m2 = [0 J2_kg_m2_base] ; % This one remains constant
 L1_m = [0 (L1_m_base * (1 + Noise_matrix(j,1)*r_noise/100.0))] ;
 L2_m = [0 (L2_m_base * (1 + Noise_matrix(j,2)*r_noise/100.0))] ;
m_kg = [0 (m_kg_base * (1 + Noise_matrix(j,3)*r_noise/100.0))];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Run the model
plant_state = sim(model_name, 'StopTime', 't_final');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Get the plant state histories
% Get the plant state histories
time = plant_state.get('time');
arm_position_target_deg = plant_state.get('arm_position_target_deg');
arm_position_deg = plant_state.get('arm_position_deg');
arm_speed_deg_sec = plant_state.get('arm_speed_deg_sec');
pendulum_position_deg = plant_state.get('pendulum_position_deg');
pendulum_speed_deg_sec = plant_state.get('pendulum_speed_deg_sec');

%show_plant_state_v1
%pause

% Get number of time points in the simulation
num_time_points = length(time);

% Scan full length of simulation run
for k = 1 : num_time_points

% For Lower/Transient time interval
if (time(k) <= t_Transient)
Pl(i,j) = Pl(i,j) + ...
 (arm_position_deg(k) - ...
 arm_position_target_deg(k))^2;
e2l(i,j) = max([e2l(i,j), ...
 (arm_position_deg(k) - ...
 arm_position_target_deg(k))^2]);

% For Upper/Steady-state time interval
else
Pu(i,j) = Pu(i,j) + ...
 (arm_position_deg(k) - ...
 arm_position_target_deg(k))^2;
e2u(i,j) = max([e2u(i,j), ...
 (arm_position_deg(k) - ...
 arm_position_target_deg(k))^2]);
end
end

% Finish up averaging sums of squares
Pl(i,j) = Pl(i,j)/num_time_points;
Pu(i,j) = Pu(i,j)/num_time_points;

% Store basic measures
U(i, j, 1) = Pl(i,j);
U(i, j, 2) = e2l(i,j);
U(i, j, 3) = Pu(i,j);
U(i, j, 4) = e2u(i, j) ;

% Computer composite measure
for k = 1 : num_metrics
 E(i, j) = E(i, j) + weights(k)*U(i, j, k) ;
end % k

% Update signal-to-noise ratio with current composite measure
SN(i) = SN(i) + E(i, j)*E(i, j) ;

%pause
end % j

% Compute Signal-to-Noise ratio for current control point
SN(i) = -10*log(SN(i)/num_noise_rows) ;

%pause
end % i

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Save experiment control and noise matrices in Excel-loadable format
save(control_matrix_filename_TXT, 'Control_matrix', '-ascii', '-tabs') ;
save(noise_matrix_filename_TXT, 'Noise_matrix', '-ascii', '-tabs') ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Save performance matrices in MATLAB format
save(perf_measures_filename_MAT, ...
 'Pl', 'e2l', 'Pu', 'e2u', 'U', 'E', 'SN') ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Save performance matrices in Excel-loadable format
save(Pl_matrix_filename_TXT, 'Pl', '-ascii', '-tabs') ;
save(Pu_matrix_filename_TXT, 'Pu', '-ascii', '-tabs') ;
save(e2l_matrix_filename_TXT, 'e2l', '-ascii', '-tabs') ;
save(e2u_matrix_filename_TXT, 'e2u', '-ascii', '-tabs') ;
save(E_matrix_filename_TXT, 'E', '-ascii', '-tabs') ;
save(SN_measures_filename_TXT, 'SN', '-ascii', '-tabs') ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Finished
echo off ;
A Case Study on the Application of a Structured Experimental Method for Optimal Parameter Design of a Complex Control System

This report documents a case study on the application of Reliability Engineering techniques to achieve an optimal balance between performance and robustness by tuning the functional parameters of a complex non-linear control system. For complex systems with intricate and non-linear patterns of interaction between system components, analytical derivation of a mathematical model of system performance and robustness in terms of functional parameters may not be feasible or cost-effective. The demonstrated approach is simple, structured, effective, repeatable, and cost and time efficient. This general approach is suitable for a wide range of systems.

Control; Experiment; Optimization; Reliability; Robustness