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This paper addresses some issues with quality assessment and quality assurance in 

response surface modeling experiments executed in wind tunnels. The role of data volume on 

quality assurance for response surface models is reviewed. Specific wind tunnel response 

surface modeling experiments are considered for which apparent discrepancies exist 

between fit quality expectations based on implemented quality assurance tactics, and the 

actual fit quality achieved in those experiments. These discrepancies are resolved by using 

Bayesian inference to account for certain imperfections in the assessment methodology. 

Estimates of the fraction of out-of-tolerance model predictions based on traditional 

frequentist methods are revised to account for uncertainty in the residual assessment 

process. The number of sites in the design space for which residuals are out of tolerance is 

seen to exceed the number of sites where the model actually fails to fit the data. A method is 

presented to estimate how much of the design space in inadequately modeled by low-order 

polynomial approximations to the true but unknown underlying response function. 

I. Introduction 

hroughout most of the 20th Century, a key tactical objective of wind tunnel testing has been to acquire high 

quality data in as great a volume as resource constraints permit. Wind tunnels have been regarded, explicitly or 

implicitly, as “data factories” designed to achieve this end. 

This industrial model of tunnel-as-factory has influenced how quality and productivity are perceived in wind 

tunnel testing, with concepts common in industrial settings borrowed extensively by the experimental aeronautics 

community. For example, industrial production quality has been associated with manufacturing process uniformity 

since Shewhart’s early work on this subject1, and Taguchi later stressed that product uniformity should be 

independent of production conditions2. The concept of “continuous improvement” promoted by W. Edwards 

Deming and others has likewise had considerable influence on industrial quality and productivity in the US and 

abroad, notably in Japan3. 
These industrial quality and productivity concepts have been adapted to experimental aeronautics under the 

tunnel-as-factory model. The result has been that quality and productivity in wind tunnel testing is generally 

associated with the quality and productivity measures for the perceived product of the test; namely, the data. That is, 

the quality of a wind tunnel test is generally assessed in terms of the experimental error in the data, and productivity 

is typically assessed in terms of data volume acquired. Such rate metrics as “polars per hour” and “points per test” 

have been commonly used to assess productivity with a view to maximizing the production of data, the perceived 

end-product of the test. 

The author has been a critic of this tunnel-as-data-factory model, with its attendant industrial concepts of quality 

through minimized experimental error, and productivity through high data volume. This criticism originates with a 

conviction that, contrary to assumptions broadly held in experimental aeronautics, the acquisition of quality data in 

high volume is not a principal objective of wind tunnel testing. Data acquisition is, of course, a crucial element of 

the wind tunnel testing process, but it represents an element of the approach we take to achieving the true objective. 
It is not the objective itself. 

The objective of a wind tunnel test is to acquire enough new knowledge about the test article that we can 

adequately predict its future behavior within the design space of the test. The traditional approach to achieving this 

objective has been to require all test conditions of interest to be physically established in the test, making direct 

measurements at all of these conditions. In reality, there is seldom nearly enough resources available to do this. 

Consider, for example, a relatively modest wind tunnel test featuring only six independent variables; say angle of 

attack, angle of sideslip, Mach number, Reynolds number, and the deflection of a couple of control surfaces. For 
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computational convenience, let us assume that each variable is to be set at 10 levels. There would then be 

106 = 1,000,000 unique factor combinations, of which there is time in a typical four-week tunnel entry to set, 

perhaps, 5,000. That means that 99.5% of the design space will go unexplored in this example. (The author has been 

performing similar calculations in actual wind tunnel tests for decades, and this percentage is representative of how 

much information is “left on the table” in a conventional wind tunnel test focused only on data collection). 

It is not uncommon for experimental aerodynamicists to cite their expertise in prioritizing factor combinations of 
interest to explain how a successful wind tunnel test can still be executed despite the small percentage of factor 

combinations there is time to physically set in a typical tunnel entry. Nonetheless, it strains credulity to suggest that 

absolutely nothing of interest lies in over 99% of the factor combinations that go unexplored, and that there are no 

surprises lurking in such a huge portion of the total design space. On the contrary, it is not uncommon in the latter 

stages of an aircraft development program for hindsight to reveal that regions of the design space that were sparsely 

explored during prior wind tunnel testing are in fact at least as interesting as those where more data were acquired. 

A wind tunnel is more properly regarded as a laboratory than as a data factory. We can conduct experiments in 

this laboratory that yield new knowledge about the test article. Specifically, we can analyze the data acquired with a 

relatively compact test matrix designed for this purpose, to learn enough about the test article that its behavior can 

be adequately predicted anywhere within the test design space. This includes all points in the design space where 

measurements were physical made, and all other points that could not be directly assessed because of constraints on 

time and money. 
The transition from high-volume data collection to aeronautical experimentation is facilitated by exploiting 

response surface modeling (RSM) methods to fit a sample of data, typically using regression techniques. This 

process results in mathematical models for the responses measured in a test (e.g., forces, moments, pressures) as a 

function of the independent variables that define the test matrix, such as angle of attack, angle of sideslip, Mach 

number, and Reynolds number. 

The emergence in recent years of powerful, low-cost data acquisition programs for personal computers makes it 

quite easy to generate relatively complex regression models. Such a model can be created with a few mouse-clicks 

after the data are pasted from a spreadsheet, say. As a practical matter, most of the effort in producing a reliable 

response surface model is not expended in developing the regression model. The effort lies in validating the model. 

All of all the information that can be extracted from the data about the quality of a regression model is contained 

in the residuals—the differences between response model predictions and physical measurements made at the same 
site in the design space. Other information may be available from sources external to the test, but everything that can 

be learned about the quality of the result from the test itself is to be found in the residuals.  For this reason, rather a 

lot of care goes into analyzing them in a typical wind tunnel response surface modeling experiment. 

A procedure has been proposed for assessing the quality of a response surface model for the case in which 

residual tolerance levels have been established4. By this procedure, the residuals are regarded as a series of Bernoulli 

trials with binary outcomes of “pass” or “fail.” A residual is said to “pass” if it is within tolerance; that is, if its 

magnitude is smaller than the prescribed level of acceptable tolerance, and it is said to “fail” if its magnitude equals 

or exceeds this prescribed tolerance level. 

The tolerance level is therefore defined as the magnitude of the smallest residual that is too large to be 

acceptable. For example, if a wind tunnel customer declares his quality specification to be “one half drag count, with 

95% confidence,” he is declaring that an empirical estimate of the drag coefficient for some prescribed combination 

of independent variable levels will be satisfactory if it deviates from the “true” drag coefficient by less than half a 
count. 

“Truth” in wind tunnel testing is of course an elusive commodity, but if the drag has been estimated with a 

response surface model, then a physical measurement of drag at the same site in the design space is commonly 

regarded as an acceptable surrogate for “truth.” In this example, the quality criterion reduces to a simple assertion 

that residuals of a response surface model must be less than half a drag count for the response model predictions to 

be regarded as acceptable. 

This paper was motivated by some curious results observed in the assessment of certain wind tunnel response 

surface models. Specifically, response models that generally reproduced pitch polars to the customer’s satisfaction 

and gave other evidence of fitting the data well would nonetheless appear to generate slightly more out-of-tolerance 

residuals than anticipated. This lead to a reexamination of the RSM quality assessment process, in which Bayesian 

statistics were invoked to explain the apparent discrepancies. This Bayesian perspective provides some surprising 
insights into the RSM quality assessment process. 

Section II of this paper begins with a review of quality assurance in response surface modeling. Quality 

assurance is distinguished from quality assessment in that it simply encompasses those procedures designed to 

achieve a particular end, while quality assessment entails some evaluation of the success in accomplishing that end. 
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In Section III a particular quality assessment strategy for response surface modeling is outlined. Section IV 

introduces Bayes’ Theorem and the impact of inference error on conclusions based on necessarily imperfect 

observations. Section V describes the application of Bayesian inference specifically to response surface model 

quality assessment, citing two case studies. Section VI presents concluding remarks. 

II. Quality Assurance in Response Surface Modeling 

The fidelity with which a regression model can be made to represent the data is a function of the volume of data 

employed in the regression. Assuming the response being modeled exhibits certain mild constraints that are common 

in practical circumstances—that it can be represented by a continuous function with derivatives that exist 

everywhere, for example—a Taylor series could be fitted, the order of which is limited only by the volume of unique 

data points used in the regression. An infinite number of unique points would permit all of the coefficients of an 

infinite Taylor series to be quantified, representing the underlying response exactly. A polynomial approximation to 

the underlying function of order n-1 can be constructed from n data points which would pass through each data point 
in the regression, thus fitting all of the data exactly. 

Fortunately, it is neither necessary nor even desirable to fit all of the data exactly. This is because the data will 

inevitably exhibit experimental error, with the higher order terms of a complex regression model serving only to 

represent the noise in the data. A lower order polynomial generally suffices to represent the ways in which forces, 

moments, or pressures change systematically with changes in the independent variables (angle of attack, etc.), 

especially over suitably constrained domains of the independent variables. 

It is necessary to acquire a minimum number of data points for each term in such a polynomial to ensure an 

adequate quality of fit. The fit quality of a response model is defined by a tolerance level quantifying the maximum 

acceptable difference between a model prediction and a physical measurement made at the same site in the design 

space.  It is also defined by certain minimum levels of confidence, as will now be described. 

A. Response Model Quality Specifications 
Quality in wind tunnel testing has been associated historically with the data that are acquired in the test. A high 

quality conventional wind tunnel test requires that there be relatively little variance in the data beyond that which is 

intentionally induced by planned changes in the independent variables. 

By contrast, quality in a formally designed wind tunnel test is associated with low inference error risk. The 

objective of a designed wind tunnel test is to acquire enough knowledge of the test article that its future behavior can 

be adequately predicted. That is, we wish to be able to infer responses such as forces, moments, and pressures within 

some specified tolerance, and to be able to do so for all independent variable combinations of interest throughout the 

design space of the test, with a specified level of confidence. 

The quality of a properly designed experiment depends on the probability that response predictions are within 

the specified tolerance. Note that this is independent of the quality of the data, per se. An experiment that generates 

high quality data but fails to reliably predict the future behavior of the test article is a failure, no matter how pristine 

the data. Likewise, an experiment that enables us to consistently forecast to future behavior of the test article is a 
success, no matter how much unexplained variance there may be in the raw data. As we will demonstrate, any level 

of random variation in the data itself can be overcome by acquiring a sufficient volume of data. 

We follow a common convention by using the term “residual” to designate the difference between a response 

estimated by a model prediction and one estimated at the same design space site by a physical measurement. There 

is always some uncertainty in either type of estimate. If we have established a tolerance of , say, and the residual at 

a given site equals or exceeds , we will infer that the model is inadequate to predict the response within tolerance at 

that site. Likewise, if the residual is less than , we will infer that the model is adequate to predict the response 
within tolerance. The prediction tolerance therefore represents the magnitude of the smallest unacceptable residual. 

That is, we require residuals to be smaller than (and not equal to) . 

Depending on the size of the residuals relative to , we will infer that the model either is or is not capable of 
making predictions at various sites in the design space that are within tolerance, but because of the uncertainty in the 

predicted response as well as the measured response, either inference may be right or wrong. If we are right in either 

case, we will have made a proper inference. But there are two possible ways to be wrong. We might erroneously 

indict the model on the basis of a single-point prediction when the mean of a large number of residuals would have 

revealed a within-tolerance response prediction. Likewise, we might erroneously validate the model based on a 

single-point prediction when the mean of a large number of residuals would have exceeded the specified tolerance 

level. In either case, we will have made an inference error. 
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We can drive the probability of making either inference error arbitrarily low by acquiring enough data. However, 

we cannot drive either inference error risk to zero with any finite volume of data. An important element of the 

modern design of wind tunnel experiments is to specify enough data to ensure that inference error probabilities do 

not exceed levels prescribed by the experimenter. This inference error risk management is accomplished by scaling 

the experiment; that is, by specifying the minimum volume of data necessary to achieve tolerance and inference 

error risk specifications. 

B. Minimum Data Volume Requirements 

Let  represent some acceptable probability of erroneously indicting a residual as too large, and let  represent 
some acceptable probability of erroneously claiming that a residual is within tolerance. Note that these two 

probabilities do not have to be equal, and in fact they should reflect the experimenter’s assessment of the 

consequences of committing each error. For example, it might be regarded as a more serious error to validate the 

model at a site where its prediction is actually out of tolerance than to indict the model at a site where its response 

prediction is in fact within tolerance. The latter error may result in some added expense and duplication of effort in 

an unnecessary search for an improved response model when an adequate model was already in hand. While not a 

desirable outcome, it is probably not as serious as validating a model that makes erroneous response predictions.  In 

such a case one might prefer to specify a value of  that is smaller than . 
To summarize, the quality of a wind tunnel response surface modeling experiment is less dependent on the 

quality of the measurement data than the quality of response predictions we are able to make after learning enough 

about the test article to model its future behavior. The quality of response predictions is assessed in terms of the 

experimenter’s tolerance for prediction error, , and his tolerance for inference error risk, and . 

The researcher specifies acceptable levels of , and  and then estimates the volume of data required to ensure 
that response predictions reflect these specifications. The smaller these values are, the more data that will be 

required. As noted earlier, the minimum volume of data necessary to ensure specified levels of  and  for a given  

will also depend on the quality of the measurement environment as quantified by its unexplained variance, 2. Here, 

 is the usual standard deviation associated with a sample of genuine replicates. The unexplained variance can be 
estimated from previous experience in the proposed tunnel, or from replicates acquired for this purpose.  We will 

show that the minimum required data volume is directly proportional to the unexplained variance, which is in 

harmony with intuitive expectations. 

Figure 1 illustrates how tolerances for prediction error, , and for inference error risk,  and , are related to 

each other through two formal hypotheses used to assess prediction residuals. We first postulate a null hypothesis 
that there is no difference at a given site in the design space between the response estimated from a model prediction 

and the response estimated from a direct measurement. That is, the null hypothesis, H0, states that the true residual is 

zero. There is a reference distribution associated with this hypothesis that is represented by the normal probability 

distribution on the left in Fig.1. This distribution has a mean zero and a variance equal to the model prediction 

variance. 

 
Figure 1. Reference distributions for null hypothesis (left) and alternative 

hypotheses (right) describing model prediction residuals 
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Under the null hypothesis that the model predicts perfectly at the design-space site where it is being evaluated, 

the H0 reference distribution reflects the dispersion in estimates of the residual that will be induced by ordinary 

chance variations in the data. Even if the model predicts perfectly and the true residual is zero, experimental error 

will result in estimates of the residual that can be greater than or less than zero, however, the larger the magnitude of 

the estimated residual under H0, the less likely it will be to occur. This is what the H0 reference distribution on the 

left of Fig. 1 displays. 
The reference distribution on the right in Fig. 2 corresponds to an alternative hypothesis, HA, that the residual is 

just out of tolerance; that is, that it has a magnitude of . The mean of this distribution is displaced from the mean of 

the H0 distribution by , and has the same variance. That is, there will be the same model prediction variance due to 
experimental error whether the predicted response estimate coincides with the measured response estimate or is 

displaced from it by . 
Even though Fig. 2 displays two reference distributions in the same figure, only one will describe a given 

experimental situation. That is, either the model will predict the measurement precisely, or there will be some 

difference, but both conditions cannot hold simultaneously. We make a formal inference in evaluating the model 

prediction at a given site in the design space by rejecting either the null hypothesis of its alternative. 

The quantity x* in Fig. 1 is a critical value used as a criterion for deciding which hypothesis to reject. If the 

residual is large enough to equal or exceed x*, we will reject the null hypothesis and infer that the model prediction 

is not within tolerance. Such an inference could be erroneous if ordinary chance variations in the data conspired to 

generate an artificially large residual. The shaded area under the H0 reference distribution to the right of x* has a 

value of , and represents the probability that this will happen. That is,  is the probability that we will erroneously 
reject the null hypothesis and indict a residual as being out of tolerance when it is not. 

If the residual is less that x*, we will reject the alternative hypothesis and infer that the model prediction is 

within tolerance. The shaded area under the HA reference distribution to the left of x* has a value of , and 
represents the probability that such an inference will be incorrect because of some unfortunate combination of 

experimental errors that combine algebraically to understate the residual. 

We can estimate data volume requirements with the aid of Fig. 1 by recognizing that the sizes of  and  depend 

on the width of the reference distributions, which are determined by the volume of data used in the regression. The 

greater the volume of data, the narrower the reference distributions will be, and thus the smaller  and  will be. The 

key to a well-designed experiment is to specify enough data to drive  and  to acceptably low levels, but not to 

acquire substantially more data than this so that direct operating costs and cycle time can be kept to a minimum. 
The minimum volume of data required can be estimated easily with the aid of Fig. 1. Note that x* is located a 

distance  to the right of zero. If M is the standard error in model predictions that defines the widths of the H0 and 

HA reference distributions, then we can express this distance as a multiple of M. We will use z to designate this 

multiple. That is, x* is a distance of zM to the right of zero. Note that z increases as  decreases. That is, the 
farther x* is to the right, the less likely it is that a residual large enough to fall to the right of it will occur by chance 

if the null hypothesis is actually true. 

We can also express in multiples of M the distance x* is to the left of the mean of the HA distribution. If we use 

z to designate this multiple, then x* is a distance of zM to the left of  in Fig. 1. Consulting the figure, we 
therefore have: 

 M Mz z      (1) 

It has been shown5 that the average prediction variance across all points used to fit a polynomial regression 

model has the same functional form for any order of polynomial and for any number of independent variables fitted 

by the polynomial: 

 
2 2

M

p

n
 

 
  
 

 (2) 

where p is the number of terms in the model including the intercept, n is the number of fitted data points, and  is 
the ordinary measurement standard error. 
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Square Eq. (1) and insert Eq. (2): 
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Solving Eq. (3) for n: 
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At least one degree of freedom is required for each term in a regression model, so we must have at least p points 

to fit a p-term regression model. The bracketed term in Eq. (4) features metrics for data quality, , the 

experimenter’s tolerance for prediction error, , and inference error risk, and .  It represents a multiplier of the 
minimum volume of data, p, that is necessary to achieve specified quality standards in a given measurement 

environment. 

Equation (4) can be simplified by expressing the tolerance, , as a multiple of the standard error, . One such 
multiple has an especially attractive physical interpretation. The 95% Least Significant Difference represents the 

smallest discrepancy between two response estimates that can be resolved with at least 95% confidence. It is related 

to  as follows: 

  95% LSD 2 2   (5) 

If, by definition, two physical measurements displaced by the 95% LSD cannot be resolved with more that 95% 
confidence, then a physical measurement and a response model prediction differing by the same amount are 

indistinguishable in this same sense. Inserting Eq. (5) for  into Eq. (4) eliminates both  and  from the data 
volume specification, and results in the following formula for minimum data volume as a function of the two 

inference error risk specifications,  and : 

 

2

1

2 2

z z
n p

 
  
   
   

 (6) 

Assume a well-fitted regression model; that is, a regression model that passes through the “the center of the data” 

in such a way that fitted data points are distributed above and below model predictions only because of random 

error, plus possibly some systematic error that is insignificant compared to the random error. If such a model is 

based on fitting a volume of data specified by Eq. (4), it will be expected to predict responses with a tolerance of  

such that individual residuals exceed x* with a probability not in excess of  Likewise, chance variations are not 

expected to result in a truly out-of-tolerance residual appearing to be within tolerance (smaller than x* = zM) more 

than (1 - % of the time We test these assertions during the assessment of the model, by counting the residuals that 
are within tolerance and those that are out of tolerance. 

III. Quality Assessment in Response Surface Modeling  

We distinguish between quality assurance, and quality assessment. Quality assurance entails proactive measures 

undertaken to meet specified quality requirements, such as scaling the experiment so that enough data are acquired 

for a regression model constructed by fitting those data will have the requisite precision to make adequate 

predictions. This topic was addressed in the previous section. Quality assessment in response surface modeling 

entails performing various tests to establish whether a candidate model does in fact meet specified quality 

requirements. We discuss certain aspects of quality assessment in this section. 
A candidate response surface model is typically subjected to a battery of tests to detect systematic (not random) 

departures of model predictions from the data. Such departures, called lack-of-fit errors, can occur when the 
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underlying response is too complex to be adequately represented by the fitted model, for example. The fact that 

lack-of-fit errors are systematic rather than random can be exploited to detect them. 

A comprehensive discussion of lack-of-fit detection methods is beyond the scope of this paper, but standard texts 

on response surface modeling cover this subject5-7. Lack-of-fit errors that are large compared to random errors 

suggest that a different model might fit the data better, perhaps one with higher-order terms or other variations that 

might be indicated by patterns in the residuals. Only when no significant lack-of-fit error is evident in the residuals 
is the model typically regarded as a candidate for further consideration. 

To assess the quality of a candidate response surface model which has been shown to be devoid of significant 

lack of fit, it would be useful to have an objective process by which to determine whether residuals are within 

acceptable limits. In the previous section we took some pains to compute the volume of data needed to ensure that 

residuals would lie within some prescribed error tolerance limit with a specified probability. When the model fits the 

data well, the probability that a given residual will lie within the error tolerance is 1 – . 
If we regard physical measurements as surrogates for the true response at various sites within the design space, 

then assessing the quality of the model seems to reduce to a simple counting exercise. Can we not simply count the 

number of residuals that are within tolerance, divide by the total number of residuals, and compare with 1 – ? For 

example, if we have designed the experiment with  = 0.05 and we examine 100 residuals, should we not demand 
that at least 95 of them be within tolerance as a condition for validating the model? 

Unfortunately, residuals are random variables. If  truly is 0.05, it simply means that in a large number of 
similar experiments, we would expect 95 successes out of 100 trials more often than any other number as long as the 

model fitted the data well; that is, as long as there was no significant systematic departure of the response model 

from the data. But we would find in such a series of evaluations that 94 successes occurred almost as often as 95, 

even when the model is perfectly adequate. It would not be reasonable to reject a response model that predicted 

response levels within a prescribed tolerance level 94 times out of 100 but validate it if 95 residuals out of 100 were 

within tolerance. As a practical matter, the tolerance specification could probably be relaxed an insignificant amount 
to pick up one more residual, permitting the model to be rigorously validated. 

The prediction interval test is an example of a binomial process that is characterized by a specified number of 

trials, an assumed probability of success that is the same for each trial, and an observed number of successes. There 

is a probability distribution that describes this process, which has in common with other probability distributions a 

family of Critical Values corresponding to specified probability levels. 

For example, let us use Eq. (6) to estimate the volume of data we would need to acquire if our intent was to fit a 

4th-order polynomial in four factors well enough that prediction errors would not exceed the 95% Least Significant 

Difference more than 5% of the time, and that there would be a 99% probability that if the model truly was 

inadequate at a given site, the residual at that site would be out of tolerance. 

There are 70 terms in a full fourth-order polynomial in four independent variables, so p = 70,  = 0.05 = 0.01 
in Eq. (6), which specifies a data sample with a minimum of n = 161 points. Of these 161 residuals, how many must 

be within tolerance to validate the model with say, 99% confidence? The critical value of the binomial distribution 

that is associated with 99% confidence is 146 when there are 161 trials and the probability of success on any one 
trial is 0.95. 

This means that if at each of 161 sites in the design space there actually is a 95% probability that the model will 

predict responses within the specified tolerance, there is a 99% probability that not more than 161 – 146 = 15 of the 

residuals will be out of tolerance due to simple chance variations in the data. If there are more residuals out of 

tolerance than this, we can infer with no more that 1% chance of an inference error that the model discrepancies are 

attributable to some systematic (not random) effect, the most likely cause of which is some imperfection in the 

response model that introduces systematic departures from the measured data. 

We call “146” in this example the “Critical Binomial Number (CBN).” Critical Binomial Numbers are tabulated 

in standard statistical references, or they can be computed with readily available software. The CRITBINOM 

workbook function in Excel returns the Critical Binomial Number, for example. For the model assessment illustrated 

here, “=CRITBINOM(161,0.95,0.01)” returns the value 146. For any volume of data, the CBN can be used to 
estimate the minimum number of residuals that must be within tolerance to validate the model at some prescribed 

level of confidence. 

IV. Inference Error in a Response Model Adequacy Assessment and an Introduction to Bayes’ Theorem 

We assess response model adequacy by examining residuals at various sites throughout the design space. We 

infer that the model makes an adequate prediction at that site if the residual is within some prescribed tolerance and 

we infer that the model prediction is inadequate if it is not. 



 

American Institute of Aeronautics and Astronautics 
 

 

8 

We define a model prediction at a specified cite in the design space to be adequate if any difference between it 

and a physical measurement at the same site is small enough to be attributed to ordinary random experimental error. 

If the difference is large enough that it is sufficiently unlikely for it to be due to random error only, we assume that 

there is some systematic lack-of-fit error in play attributable to inadequacy of the response model at that site. 

It is possible, and in fact rather to be expected, that absent a level of fitting perfection unlikely to be achieved 

with a simple low-order graduating function, even a “good” regression model that fits the data adequately almost 
everywhere in the design space will display systematic error in some subset of it. We seek a model that makes 

predictions within tolerance in an acceptably high percentage of the design space (say, 95%). However, we 

recognize that there is some probability of an inadequate prediction when a low-order polynomial serves as a 

surrogate for the unknown true underlying response function.  

From examining the residual at a given site, we must infer whether the model prediction is adequate or not.  It is 

possible for either inference to be in error, simply due to random experimental error. The model may be perfectly 

adequate at a given site, but the residual observed there could be artificially large because of some unlikely 

measurement error. Likewise, a within-tolerance residual might provide a false sense of security because of an 

equally unlikely experimental error that deflates the residual. Absent an infallible test of model adequacy, it is 

possible to make an inference error about the adequacy of a response model whether we validate it or impeach it. 

More to the point, there is always some non-zero probability that such an inference error will occur. It is therefore 

necessary to consider not only the fact that the response model may or may not be adequate, but that our assessment 
of it can be right or wrong in either case.  Fortunately, there is a mechanism available to incorporate this uncertainty 

in the assessment methodology into the overall assessment of the model’s adequacy. We can use Bayes’ Theorem 

for this purpose. 

We will provide an overview of Bayes’ Theorem before delving into its application to response model adequacy 

assessment, but we first offer a few additional remarks to motivate what follows.  It is incorrect to regard Bayesian 

inference, the process we will demonstrate here, as an optional refinement of an otherwise adequate assessment that 

can be achieved with conventional frequentist thinking about how often events occur in nature. Unless we explicitly 

take into account the imperfections in our assessment methodology, as well as the imperfections they are designed to 

assess, our inference is virtually guaranteed to be wrong. It is simply a matter of degree, but in an alarming number 

of cases the conclusions that are reached absent such considerations can be very wrong indeed. 

Bayesian inference is appealing for scientific research because it explicitly accounts for the distinction between 
what is true in nature, and what is merely inferred to be true on the basis of necessarily imperfect assessments. When 

we use Bayesian inference to evaluate the probability that “A” is true given that we have observed “B,” we not only 

consider the probability of observing “B” when “A” is true, but also the probability of observing “B” when “A” is 

not true. In our application of Bayesian inference, we will not only take into account the probability that a residual 

will be out of tolerance when the response model actually is inadequate at a given site in the design space, but also 

the probability that a residual will be out of tolerance even when the response model actually is adequate. 

The following section provides a concise review of Bayes’ Theorem, and how it is a natural consequence of 

ordinary conditional probability concepts familiar to all. This will be followed by a demonstration of the basic idea 

of Bayesian inference, and then a discussion of its relevance in response surface model adequacy assessments. 

A. Review of Bayes’ Theorem 

Bayes’ Theorem is easily derived from the definition of conditional probability, as expressed in terms of a joint 

probability. The joint probability of events A and B is represented as P(A∩B) and defined as the probability that 
events A and B both occur. We define the prior probability of event “B,” written as P(B), as the probability that “B” 

will occur independent of whether event “A” occurs. We can now express both the conditional probability of “A” 

given “B,” and the conditional probability of “B” given “A” in terms of their joint and prior probabilities, as follows: 

  
 

 
|

P A B
P A B

P B


  (7) 

  
 

 
|

P A B
P B A

P A


  (8) 
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From Eqs. (7) and (8) we have 

          | |P A B P A B P B P B A P A    (9) 

which is the well-known product rule for probabilities. It leads directly to Bayes’ Theorem: 

  
   

 

|
|

P B A P A
P A B

P B
  (10) 

The quantity P(B|A)/P(B) is often described as the normalized likelihood function. We say, then, that the 

conditional probability of “A” given “B” is just P(A) times this normalized likelihood function, where P(A), called 

the “prior probability of A”, is simply our best estimate of the probability that “A” is true, absent any empirical 

evidence, “B.” The importance of the likelihood function in a Bayesian analysis derives from the fact that it depends 

on “B”, and thus represents the mechanism by which the prior probability of “A” is modified by empirical evidence 

represented by “B.” An illustration will clarify these points. 

B. Illustration of Bayes’ Theorem: Major League Baseball Steroid Scandal 

The brief derivation of Bayes’ Theorem presented above is taken from a survey paper on potential applications 

of Bayesian inference in aerospace research which the author published in 200810.  The following motivational 

illustration is also drawn from that source. It serves as a near perfect analogy of the application of Bayesian 
inference to response surface modeling assessment, which will be treated after this example is presented as a 

foundation. 

Consider how Bayesian inference could have altered key conclusions in an investigation of steroid use in major 

league baseball in 2007. This investigation was accompanied by significant publicity, and amounted to a severe 

indictment of the sport and many of its key players. 

At the time of the scandal, 12 players had experienced the league’s 10-day suspension rule for first-time 

substance abuse offenses, a number nominally consistent with the Commissioner’s assertion that 1.2% of the players 

had used steroids during the previous season, based on a combined American League and National League roster of 

854 players.  

We will augment this meager information with what are believed to be reasonable suppositions to illustrate how 

a Bayesian analysis might be performed on the steroids-in-baseball scandal. (The central points of this illustration 
are not dependent on the suppositions.) 

Let us assume that a steroid test is “95% accurate,” by which it is meant that if a player who uses steroids is 

subjected to this test, he will test positive 95% of the time. This means that 5% of steroid users will pass this test. 

Let us also assume that the test will exonerate non-users 95% of the time, which nonetheless means that 5% of those 

who do not use steroids will be falsely accused.  

Under these circumstances, one might be tempted to conclude that if a player fails such a test, there is a 95% 

probability that he does use steroids. However, this is not the case. We will use Bayes’ Theorem to show that if a 

player does fail this test, the probability that he is a steroid user is actually much less that 95%. 

Let “A” represent a baseball player who uses steroids and let “B” represent the case of a failed drug test. We are 

interested in the conditional probability that a player actually is guilty, given that he has failed the test. That is, we 

are interested in P(A|B).  We can compute this using Bayes’ Theorem. 

We will use for this illustration the figure cited by the Commissioner of 1.2% to represent the fraction of players 
who actually used steroids prior to any testing. Let us say also that prior to any testing, this was also our estimate of 

the probability that a randomly selected player would be a steroid user. We can use this information to compute how 

many users and non-users will test positive.  

If we assume that 0.012 of the league uses steroids and 0.95 of those will test positive, then 

0.012 × 0.95 = 0.0114 of the league will be users who test positive. On the other hand, 1 – 0.012 = 0.988 is the 

fraction of the league that is clean in this example, of which 0.05 will wrongly test positive. So 

0.988 × 0.05 = 0.0494 is the fraction of the league that will be falsely accused. We will have 

0.0114 + 0.0494 = 0.0608 as the total fraction of the league that will test positive (roughly 52 players), of which 

only 0.0114 × 854, or about 10, will actually be steroid users. Therefore, P(A|B), the probability that a player 

actually does use steroids given that he has tested positive, is only about 10 in 54, or roughly 18.5%! 
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The probabilities of false negatives and false positives were estimated in this example for the sake of illustration, 

although they are believed to be not unrealistic. The total number of positive tests computed in this example—52—

is consistent with numbers reported in the media at the time of the scandal for active players said to have tested 

positive for steroid use. 

The calculations presented in this example were rounded to ensure an integer number in each category of 

accused players (correctly accused and falsely accused). We can more rigorously estimate P(A|B) by invoking 
Bayes’ Theorem, after first making a slight modification to the way it is expressed in Eq. (10). For computational 

convenience we re-cast P(B) in Eq. (10) by first noting that 

      P B P A B P A B     (11) 

where the bar over “A” implies “not A”. Eq. (11) simply states that the probability of “B” independent of “A” is the 

probability that “B” occurs when “A” occurs plus the probability that “B” occurs and “A” does not occur. From 

Eq. (8) with obvious extensions to the “not A” case, Eq. (11) becomes 

          | |P B P B A P A P B A P A   (12) 

and Bayes’ Theorem as expressed in Eq. (10) becomes 

  
   

       
|

|
| |

P B A P A
P A B

P B A P A P B A P A



 (13) 

Absent any testing and subsequent application of Bayesian inference, our best estimate of the probability that a 

randomly selected player will be a steroid user is the prior probability, P(A) = 0.012 introduced earlier.  We wish to 
revise this probability by testing each player and incorporating those test results into our assessment. We will do this 

by inserting known values into Eq. (13) to compute a revised probability that a player uses steroids if he fails the 

steroid test. 

The probability that a player would test positive for steroids given that he is an actual user is ( | ) 0.95.P B A   The 

probability that a player would test positive for steroids given that he is not a user,  |P B A , is 0.05. The probability 

that a randomly selected player is clean is 

    1 1 0.012 0.988P A P A      (14)  

Inserting these numbers into Eq. (13) yields the following result: 

  
   

           

| 0.95 0.012
| 0.1875

0.95 0.012 0.05 0.988| |

P B A P A
P A B

P B A P A P B A P A


  

  
 (15) 

This compares favorably with the approximate solution of 18.5% obtained earlier by rounding numbers of players to 

integers. 

These results illustrate how much difference there can be between what is true and what is inferred in a test. The 
empirical evidence that a player failed the steroid test would cause the probability of his being a user to increase 

from the prior probability of 1.2%, estimated in the absence of any empirical evidence, to 18.75% when test results 

were properly taken into account, an increase of a factor of more than 15. Nonetheless, it is surprising that there is 

only an 18.75% probability that a player who tests positive with this test will actually be a steroid user, given the 

“95% reliability” of the test. 

This apparent discrepancy is resolved by recognizing that we wish to know the probability that a player uses 

steroids given he has failed the drug test, P(A|B), but the “95%” figure actually represents the reverse of this, 

P(B|A). It is the probability that a player will fail the drug test given that he uses steroids. The erroneous assumption 

that P(A|B) = P(B|A) occurs often enough to have a name. It is known in forensic science as the Prosecutor’s 
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Fallacy, and occurs when inference error probabilities are not explicitly taken into account as they are when 

Bayesian inference is applied.  

The same kind of erroneous inferences can be made about the quality of a response model if we assess it only by 

counting out-of-tolerance residuals.  To make a proper assessment, we must also explicitly account for inference 

error probabilities. Unfortunately, we are often in error when we make the common and seemingly reasonable 

assumption that a response model predicts adequately at (and only at) at design space sites where residuals are 
within tolerance. As we shall see, to make such an assumption is to be guilty of the Prosecutor’s Fallacy. 

V. Bayesian Inference in a Response Model Quality Assessment   

Let us now apply Bayes’ Theorem to the problem of response surface model quality assessment. The baseball 

steroid example presented in the previous section provides a roadmap for doing so. 

A. Two Examples of Response Model Quality Assessment  

The possibility that Bayesian inference could be applied in response model quality assessment was motivated in 
part by recent experiences in performing a Critical Binomial Number assessment on the results of a particular wind 

tunnel response surface modeling experiment. Figure 2 displays a set of residuals associated with a pitching moment 

response model developed from data acquired in this test. These residuals were estimated at 41 randomly selected 

sites within the design space. Measurements made at these sites were used exclusively to assess the quality of the 

response model, and were not used to generate the response model, which was based on an independent sample of 

data acquired in the same test. The red lines represent tolerance levels specified by the principal investigator, which 

corresponded to the upper and lower limits of a 95% prediction interval estimated from error degrees of freedom in 

an analysis of variance performed on the test data. 

 

 
Figure 2. Confirmation-point residuals for wind-tunnel pitching moment response 

model. Red line: “Experimental Error” tolerance level. Green line: Critical 

Binomial Number limits. 

 

The Critical Binomial Number for these 41 confirmation-point residuals was 35, assuming as a success criterion 

a 95% probability that a given residual was within tolerance, and that a 99% confidence level for the model 

assessment. Eight of the residuals in Fig. 2 are outside the tolerance limits, so the 33 successes achieved in 41 trials 
was insufficient to declare the model adequate in this test. 

The green lines in Fig. 2 represent adjusted tolerance limits for which the critical binomial number test would 

have been successful and the model declared adequate, as these lines do encompass the Critical Binomial Number of 

35 residuals. Moving the tolerance limits from the red lines to the green lines represents a very small adjustment. 

This, plus the fact that the pattern of residuals is generally featureless, with residuals distributed more or less 

randomly about a mean of zero, suggests that the response model is good, but apparently not quite good enough to 

pass the Critical Binomial Number test. 
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There were no other indications that the model had poor fit characteristics, and the general character of measured 

pitching moment polar plots was well represented by the response model. The difficulty this model had in passing 

the Critical Binomial Number test was therefore unanticipated. 

A similar result was recently brought to the author’s attention by a student at the Instituto Superior Técnico in 

Portugal11, who had tried to assess a response model—coincidentally also for pitching moment—by comparing the 

number of sites in his design space where residuals were out of tolerance with a Critical Binomial Number 
representing the maximum number of sites expected to display such out-of-tolerance residuals given the volume of 

data he had specified for the regression. He had properly applied the quality assurance methods described above to 

scale the experiment for specified inference error risks associated with a prescribed tolerance for prediction error. 

His procedures were based on methods documented in Ref. 8, in support of a Master’s thesis titled "Aircraft Wind 

Tunnel Characterization using Modern Design of Experiments." Notwithstanding his careful quality assurance 

tactics, when he used a fitted model to predict pitching moment at 65 verification points acquired independently of 

the data used to fit the model, thirteen of the 65 points were out of tolerance. The CBN was 59, which would have 

only allowed for 6 residuals to be out of tolerance. 

These two examples raise the same question. In the first example, residuals acquired at eight randomly selected 

sites in the design space were clearly out of tolerance. That is, residuals at eight sites failed the test for fitting 

adequacy by being larger than the prescribed fitting tolerance, . Likewise, in the second example residuals at 
thirteen sites also failed the test for fitting adequacy because residuals estimated there were out of tolerance.  

The question remains: Is the model in fact inadequate at all eight sites in the first example and at all thirteen sites 
in the second?  Is it not possible that in one or both cases, assessment errors have resulted in an inflated number of 

sites with an apparently inadequate fit just as assessment errors in the baseball example overstated the number of 

indicted players?  

B. Extension of Bayesian Inference to Response Model Quality Assessment 

The CBN analyses noted here have elements in common with the major league baseball example described 

above.  For example, for a response model giving every other indication of a good fit, most of the residuals should 

actually be within tolerance with a relative few “guilty” (out of tolerance) residuals, just as most of the players were 

clean in the baseball example. However, even if an assessment mechanism has a relatively low probability of falsely 

identifying within-tolerance residuals as out of tolerance, the absolute number so impeached can be relatively large 

if enough sites in the design space are tested.  

This was the reason for the unexpected results in the baseball example. Because of the large roster of players and 

relatively small number of steroid users, there was a sizable pool of innocent players subjected to inevitable 
inference errors in the testing. Even with a relatively low inference error probability, the absolute number of falsely 

accused players could be relatively large because so many innocent players were tested. 

Compounding matters, the absolute number of guilty players identified in the steroid testing would have been 

relatively small if the total number of guilty players in the league were small. This would be true even if the test was 

effective enough to properly identify a relatively large fraction of guilty players. The result, as the calculations 

above illustrate, would have been a surprising percentage of accused players who in fact were innocent. 

Just as the steroid test was imperfect, so is the use of residuals to identify design space sites where the model is 

inadequate. Residuals estimated at each site represent a single instance of the difference between two random 

variables, each of which is drawn from a universe of possible values distributed about some unknown true value. 

The two random values are each empirical estimates of some response such as pitching moment, one comprised of a 

single-point measurement and one comprised of a model prediction based on some finite number of individual 
measurements. Both response estimates are necessarily imperfect because of experimental error, and the difference 

between them is therefore an imperfect indicator of how well the response model represents the data. 

For these reasons there is always some non-zero probability, however low, that an out of tolerance residual does 

not indicate a site for which the model is inadequate. The reverse is also true; the response model does not 

necessarily make adequate predictions at every site for which a residual is within tolerance. However, if the number 

of sites where the model is adequate is large compared to the number of sites where it is not, the absolute number of 

falsely indicted sites will be large compared to the number of sites that are unjustifiably validated. The result will be 

a net surplus of falsely indicted design space sites. 

To see how this works in the case of a response model adequacy assessment, let  represent the (unknown) 
fraction of the design space where the model truly is inadequate; that is, where true residuals would in fact be out of 

tolerance.  Let  and  represent the inference error probabilities illustrated in Fig. 1. That is, let  represent the 
fraction of the design space where the model is truly adequate but experimental error results in an overstated 

residual and an improper inference that the model is inadequate. Let  represent the fraction of the design space 



 

American Institute of Aeronautics and Astronautics 
 

 

13 

where the model is actually inadequate, but where experimental error results in residuals that are nonetheless within 

tolerance, resulting in improper inferences that the model has made adequate response predictions at those sites. 

It is a common assumption that models are inadequate where residuals are out of tolerance and adequate where 

they are not. However, this will only be reliably true when inference errors ( and ) are zero.  We can use Bayes’ 
Theorem to estimate the probability that a model actually is inadequate at a site for which the residual is out of 

tolerance, given non-zero values for  and .  
Let “A” represent some design site for which the model is truly inadequate, and let “B” represent a residual that 

is out of tolerance. We wish to know P(A|B), the probability that the model predicts inadequately at a site, given that 

the residual there is out of tolerance. 

We have defined  to be the unknown fraction of the design space where the model truly is inadequate. That is, 

  P A   (16) 

Since  is the probability that a residual will be within tolerance at a site for which the model is actually 

inadequate, the quantity 1 –  is the probability that a residual will be out of tolerance given that the model is 
inadequate. That is,  

  | 1P B A    (17) 

We have defined  to be the probability that a residual will be out of tolerance given that the model is adequate, 
so  

  |P B A   (18) 

Since  represents the (unknown) fraction of the design space where the model is inadequate, the probability the 
model is adequate at a given site is as follows, from Eq. (16):  

    1 1P A P A      (19) 

Inserting Eqs. (16-19) into Eq.(13) yields the following result: 

  
 

   

1
|

1 1
P A B

 

   




  
 (20) 

Note the following: 

  = the probability that a residual is out of tolerance when the model is inadequate 
  = the probability that a residual is out of tolerance when the model is adequate 

 

The denominator of Eq. (20), comprised of the sum of these two probabilities, is just the probability that the 

residual at a given site is out of tolerance whether the model is inadequate there or not. That is, the residual can be 

due to lack of fit in the model, or to chance variations in the data. 

    1 1Probability that residual is out of  tolerance         (21) 

Eq. (21) represents the probability that a residual will be out of tolerance whether the model predicts adequately 
at that site or not. So Eq. (20) is 

  |
sites where model does not fit 

P A B
sites where residual out of  tolerance

  (22) 
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Eq. (20) demonstrates that it is only when  = 0 that P(A|B) = 1. That is, an out of tolerance residual at some site 
in the design space does not imply with certainty that the model does not predict adequately at that site, as long as 

there is some probability that chance variations in the data are responsible for the residual being out of tolerance. 

Note also from Eq. (10) that the Prosecutor’s Fallacy cited earlier, that P(A|B) = P(B|A), only holds for the 

theoretical case in which P(A) = P(B); that is, when the probability that a residual is out of tolerance at a given site is 

the probability that the response model predicts inadequately at that site. As long as there is some probability, , that 
a residual can be out of tolerance at a given site even when there is no lack of fit error there, the Prosecutor’s Fallacy 

will remain a fallacy. 

Further insights can be gleaned from Eq. (21) by expanding the denominator: 

  
 

   

   

   

1 1 1
|

1 1
P A B

     

            

  
  

        
 (23) 

Assume a reasonably well-fitted model for which a sufficient volume of data has been fitted to ensure that 

residual assessment inference errors are small. That is, assume  and  are all small.  Then the second term in the 
denominator is negligible compared to the first. For example, assume that the model actually predicts responses 

within tolerance at 95% of the design-space sites, so that  = 0.05. Assume also that a sufficient volume of data has 

been acquired per Eq. (4) so that  = 0.05and  = 0.01. Then  +  = 0.05 + 0.05 = 0.10 in Eq. (23), and  = 

0.05(0.05 + 0.01) = 0.003 = 0.03( +  ). Since we also have that  << 1, we can rewrite Eq. (23) to an excellent 
approximation as 

  |P A B


 



 (24) 

Eq. (24) makes it clear that a residual can be out of tolerance two ways, while the model can only be inadequate 

one way.  The model is inadequate to predict the response at a given site only if there is a statistically significant 

lack of fit error at that site. However, the residual can be out of tolerance due to lack of fit (probability ), or because 

of ordinary chance variations in the data (probability ). We do not want to indict the model simply because chance 
variations generated an out-of-tolerance residual.  Eq. (21) and in its simpler form, Eq. (24) indicate what fraction of 

the out-of-tolerance residuals actually do imply a poorly fitting response model. For the numerical example cited 

above in which  = 0.05, only about half of the residuals are expected to be out of tolerance due to lack of fit. 
The other half were acquired at sites where the model predicts adequately, but chance variations in the data caused 

the residual to be out of tolerance.  

C. Revisiting the Critical Binomial Number Analyses 

It is now clear why the Critical Binomial Number test is so difficult to pass.  If we define a successful Bernoulli 

trial as one in which the residual lies within upper and lower bounds of a 95% prediction interval, for example, and 
then assign a per-trial success probability of 0.95 when we estimate the Critical Binomial Number, we are implicitly 

assuming that in 100% of the design space the model fits the data so well that all out-of-tolerance residuals are due 

to nothing more than chance variations in the data. If this is in fact the only mechanism in play, then indeed the CBN 

would represent the minimum number of successes (residuals within the 95% prediction interval) that we would 

expect for a given total number of trials. However, if systematic (not random) lack of fit error is in play, this would 

tend to increase the number of Bernoulli failures. Equivalently, it would reduce the per-trial success probability to 

something less than 95%. 

An ideal regression model would feature enough higher-order terms to ensure that systematic lack of fit errors 

are negligible. Considerable effort is in fact expended to ensure this during the model construction. However, the 

response models are typically just low-order polynomial approximations over a limited range of the independent 

variables for some complex underlying function. Some lack of fit, however small, is inevitable because of all the 
higher-order terms in an infinite polynomial series representation of the underlying function that must be neglected 

due to resource constraints, if nothing else. 

Rather than using a CBN analysis to determine whether the model under evaluation experiences any is lack of 

fit, it may be more sensible to simply stipulate that it inevitably does at some level, and then estimate in what 

fraction of the design space such lack of fit errors prevent the model from adequately predicting responses. 

Realistically, that fraction can never be zero for any imperfect response model approximation, but it may be small 
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enough to be acceptable. As a practical matter, few aerodynamicists are likely to reject as inadequate a model that 

can predict responses within tolerance in, say, 95% of the entire design space. 

Consider the example cited in discussions surrounding Fig. 2. In this example, Eight residuals were out of 

tolerance out of a total of 41 randomly selected design-space sites were residuals were estimated. We assume a 

Critical Binomial Number of 41 – 8 = 33 as ask what the minimum per-trial success probability would have to be to 

achieve 33 successes in 41 trials, assuming we wish to be 99% confident of our estimate. 
There are various ways to perform this calculation but perhaps the easiest is to invoke the CRITBINOM 

workbook function in Excel, where we find that CRITBINOM(41, 0.918, 0.01) = 33. This indicates that the 

associated success probability is 91.8%. Call this probability of success, ps. This means that 1 – ps is the probability 

that a residual is out of tolerance, so by Eq. (21) we have  

    1 1s1- p         (25) 

Solving Eq. (25) for , 
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 (26) 

Continuing with the current example cited in discussions surrounding Fig. 2, we have ps = 0.918,  = 0.05, and 

 = 0.01. Inserting these into Eq. ( 26): 

  

 

 

 

1 1 0.05 0.918
0.034

1 1 0.05 0.01
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 (27) 

Eq. (27) indicates that in this example, the model will predict poorly with a probability of only 0.034, which is 

within the prescribed  specification of 0.050. Putting it another way, the model is expected to predict responses 
without significant systematic lack of fit errors in 96.6% of the design space. 

We can use the results of Eq. (27) to estimate P(A|B) with Eq. (20): 

  
 

   

 

   

1 1 0.01 0.034
| 0.411

1 1 1 0.01 0.034 0.05 1 0.034
P A B

 

   

 
  

     
 (28) 

Recall that “A” signifies a design space site where the residual is out of tolerance because of model 

imperfections that result in genuine lack of fit at that site.  Recall also that “B” signifies a residual that is out of 

tolerance.  If we were to indulge in the Prosecutor’s Fallacy, denying the possibility of inference errors in assessing 
whether or not an out-of-tolerance residual implies an inadequate model prediction, we would assume that an out-of-

tolerance residual automatically implies that the model fits the data poorly. In the current example, this would 

suggest that the model is inadequate at 8 sites out of 41 tested. However, Eq. (28) indicates that given the eight 

residuals observed to be out of tolerance, only 0.411 × 8 = 3.3 = 3±1 of these cases are due to systematic error in the 

model.  The remaining 5±1 out-of-tolerance residuals can be attributed to ordinary chance variations in the data. 

Let us exclude the three residuals in this example that are attributed to systematic lack of fit error and ask if the 

remaining 5 residuals are consistent with what we would expect for the 95% prediction interval tolerance we are 

claiming.  That is, we ask what the CBN would be for 41-3 = 38 trials for which the success probability is 0.95. 

Again using Excel, we find that CRITBINOM(38,0.95,0.01) = 32, implying that up to 38-32 = 6 Bernoulli trials out 

of 38 could fail even if the per-trial success probability is 95%. This compares with the 5±1 forecasted to be out of 

tolerance due to random error after we use Eq. (28) to estimate that 3±1 of the 8 total residuals observed to be out of 

tolerance are due to systematic error. That is, we conclude that the model satisfies precision requirements associated 
with a 95% prediction interval in regions of the design space where systematic error is not an issue, which we 

estimate to be 96.6% of the design space per Eq. (27). 

We can perform a similar analysis on the second test case described above. In that example, a response model 

was constructed from a sample of data scaled for inference error probabilities of  = 0.05 and  = 0.01. It was tested 



 

American Institute of Aeronautics and Astronautics 
 

 

16 

with a 95% prediction interval tolerance and subjected to a Critical Binomial Number analysis featuring 65 trials, of 

which 13 were out of tolerance. 

Using the CRITBINOM function in Excel, we compute the Critical Binomial Number for this case as 

CRITBINOM(65,0.95,0.01) = 59, meaning that no more than  65 - 59 = 6 residuals should have been out of 

tolerance, about half as many as were actually observed. There is only a 1% chance of error if we conclude from this 

test that the probability of success in individual trials is not 95% as assumed. 
This suggests that some systematic error associated with the model is inflating the prediction error we would 

otherwise expect if all residuals were due exclusively to ordinary random error. The question is whether all 13 out-

of-tolerance residuals were the result of an inadequate model, or whether some of them could be out of tolerance 

because of inference errors in assessing the residuals.   

We have already established that to regard every out-of-tolerance residual as evidence of an imperfection in the 

response model is to be guilty of the Prosecutor’s Fallacy. Some of these residuals can be out of tolerance due to 

chance variations in the data that do not reflect negatively on the model. 

We begin as before, by estimating the per-trial success probability in a series of Bernoulli trials that is expected 

to result in an observed number of failed tests out of a known number of trials. In this case there were 13 failures in 

65 trials, and by iterative calculations using Excel’s CRITBINOM function we determine that 

CRITBINOM(65,0.900, 0.01) = 13.  We infer therefore that the per trial probability of success, ps, is 0.900, not 

0.950 as we would have assumed if only random errors were in play. We insert this value of ps, plus known values 

for  and , into Eq. (26) to compute , the fraction of the design space for which the observation of an out-of-
tolerance residual is expected to signify true lack of fit. 
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 (29) 

Eq. (29) indicates that in this example, the model will predict poorly with a probability of 0.053, which is on the 

order of the prescribed  specification of 0.050. That is, the model is expected to predict responses without 

significant systematic lack of fit errors in 94.7% of the design space, or nominally for 95% of all model predictions. 
We can use the results of Eq. (29) to estimate P(A|B) with Eq. (20) as before: 
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 (30) 

From Eq. (22) above we interpret this result to mean that a little over half of the out-of-tolerance residuals reflect 
imperfections in the response model. The rest can be attributed to inference errors associated with the uncertainty in 

declaring a residual to be within tolerance or out of tolerance. For the example we are currently considering, 

Eq. (30) suggests that only 52.7% of the 13 out-of-tolerance residuals are due to model imperfections, or roughly 

7±1.   The remaining 6±1 out-of-tolerance residuals can be attributed to random error. 

We exclude the 7 residuals due to genuine model imperfections from further CBN analysis to examine what the 

CBN would be for trials that are expected to feature only random error. That is, we ask what the CBN would be for 

65-7 = 58 trials for which the success probability is expected to be 0.95. Again, using Excel we find that 

CRITBINOM(58,0.95,0.01) = 51, implying that up to 58-51 = 7 Bernoulli trials out of 58 could fail even if the per-

trial success probability was 95%. This compares with the 6±1 forecasted by Eq. (30) to be out of tolerance due to 

random error. 

The net assessment in this example is that in 65 trials we would expect 6 or 7 residuals to be out of tolerance due 

to chance variations in the data (ordinary random error), and about the same to be out of tolerance due to systematic 
lack of fit error, for a total of 12 – 14 residuals out of tolerance. This compares with the 13 residuals actually 

observed to be out of tolerance in the 65-trial test that was conducted. We anticipate that the model will predict 

responses with a precision consistent with a 95% prediction interval throughout roughly 95% of the design space. 

VI. Concluding Remarks 

This paper has focused on Bayesian inferences that affect the probability that an out-of-tolerance residual 
reliably implies a poorly fitting model at the site where the residual is observed. Such inferences are influenced by 

both by the probability of erroneously declaring a residual to be out of tolerance, and by the probability of 

erroneously declaring a residual to be within tolerance. Both probabilities can be driven below specified limits by 
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scaling the regression experiment appropriately; that is, by acquiring a sufficient volume of data. The relationship 

between inference error probability and data volume was reviewed. 

Contrary to commonly held suppositions, the number of sites where a response surface model fits poorly is 

different from the number of sites where the residual is out of tolerance. In general, the number of design-space sites 

where the model actually does fit poorly is less than the number of sites where residuals are out of tolerance. That is, 

it is possible for a residual to be out of tolerance even at a site where the model fits the data adequately. This non-
intuitive condition arises from the fact that there is always some uncertainty in assessing whether a given residual is 

within tolerance or not. In commonly occurring circumstances, a response surface model might actually fit the data 

adequately in over half of the design space sites for which residuals are out of tolerance. 

We have also outlined a procedure for estimating the fraction of the design space for which residuals are 

expected to be too large to attribute to simple random error. At a given site in the design space there is bound to be 

some non-zero probability that a low-order polynomial approximation to the true underlying function will fail to 

predict the true response within some specified tolerance. The comparison of model predictions with direct 

measurements is subject to an extra dollop of uncertainty because such residuals reflect imperfections in the 

response model as well as ordinary measurement imperfections. 

The question is not whether a prediction by a necessarily imperfect response model will mirror a necessarily 

imperfect measurement at the same site in the design space, but how often the difference between the two will be too 

great to attribute to simple random error. That is, we ask how often (or for what percentage of the design space) the 
model truly fails to fit the data. The adequacy of the model then depends on whether this fraction is low enough to 

be acceptable. 

Even if we establish that the response model fits the data well enough in an acceptably high percentage of the 

cases, the question remains as to whether such modeling imperfections result in errors that are too great to be 

acceptable. This question is best addressed by conventional residual analysis, in which the residual variance is 

quantified and compared to prescribed specifications. 
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