NASA NDE Program

Ed Generazio
Office of Safety and Mission Assurance
NDE Program Manager

Eric Burke
Office of Safety and Mission Assurance
Deputy NDE Program Manager

National Science and Technology Council NDE Communication Group Meeting
April 7-8, 2015
Institute for Defense Analyses, Alexandria, VA
National Aeronautics and Space Administration

Administrator
Deputy Administrator
Associate Administrator

Chief Financial Officer*
Chief Information Officer*

Chief Scientist
Chief Technologist

Chief Engineer
Chief, Safety and Mission Assurance

Chief Health and Medical Officer

Diversity and Equal Opportunity
Legislative and Intergovernmental Affairs*
Communications*
Small Business Programs

Mission Support Directorate

Human Capital Management
Strategic Infrastructure
Headquarters Operations
NASA Shared Services Center

Internal Controls and Management Systems
Procurement
Protective Services
NASA Management Office

Aeronautics Research Mission Directorate
Human Exploration and Operations Mission Directorate
Science Mission Directorate
Space Technology Mission Directorate

Ames Research Center
Dryden Flight Research Center
Glenn Research Center
Goddard Space Flight Center
Jet Propulsion Laboratory

Johnson Space Center
Kennedy Space Center
Langley Research Center
Marshall Space Flight Center
Stennis Space Center

Reporting Structure

Administrator
Deputy Administrator
Associate Administrator

Note:
* Center functional office directors report to Agency functional AA. Deputy and below report to Center leadership.
Office of Safety and Mission Assurance

Chief, Safety and Mission Assurance
Terrence W. Wilcutt
Joyce Minor (Executive Assistant)

Deputy
Harold M. Bell
Joyce Minor (Executive Assistant)

Resources Management Office
Paul Mexcur

Senior Safety and Mission Assurance Manager
P. Martin

NASA Safety Center
Alan H. Phillips

NASA Independent Verification and Validation (IV&V) Program
Gregory D. Blaney

NASA Engineering and Safety Center
Timmy R. Wilson

NASA Center SMA Directors
- Ames Research Center/M. Liu
- Dryden Flight Research Center/D. Purifoy
- Glenn Research Center/A. Liang
- Goddard Space Flight Center/J. Bruner
- Jet Propulsion Laboratory/J. Chodas
- Johnson Space Center/W. McArthur
- Kennedy Space Center/R. DeLoach (Act’g)
- Langley Research Center/G. Watson
- Marshall Space Flight Center/S. Cash
- Stennis Space Center/F. Douglas

SMA Technical Discipline Fellows
- System Safety/H. Dezfuli, Ph.D. (HQ)
- Quality Engineering/B. Hughitt (HQ)
- Reliability and Maintainability/F. Safie, Ph.D. (Marshall Space Flight Center)
- Software Assurance/M. Wetherolt (HQ)

Mission Support Division
Deirdre Healey
Erin Wolshans
(Secretary/Correspondence)

Safety and Assurance Requirements Division
Frank Groen, Ph.D.
Dianne P. Purvis (Secretary)

Panels
- Interagency Nuclear Safety Review Panel
- IV&V Board of Advisors
- Space Flight Safety Panel
Task recommendations

Level 2 NDE Technical Plans

Level 2 NDE Technical Plan Approvals

COPs

Level 1 NDE Technical Plan Mods, Reports

Reprogramming & Reclama actions

BPE guidelines & initiation

1/15 & 6/15 web based task status reports, reclama

BPE= Budget Planning Exercise

COP= Cost Operating Plan; all COPs are reported monthly to LaRC

NNWG

Funding to Centers

Task recommendations

Task Guidelines, 3yr

NNWG

ARC DFRC GSC JPL JSC KSC LaRC GRC MSFC SSC

NDE Program Manager
Ed Generazio
Deputy NDE Program Manager
Burke

POP call

Case study - Smart COPV

Level 2 NDE Technical Plans
• **Mission:** Develop and maintain NDE infrastructure and technologies to meet NASA Program quality assurance requirements. Develop and maintain NDE Standards and Specifications for quality assurance in aerospace applications. Broaden the use of industry standards within NASA, and support mission critical NDE activities that are unresolved by programs and require concerted efforts to assure mission success.

• **Strategic Goals:** Update and validate POD physical Standards, document Standards, and POD methodologies. Composites remain to be an inspection challenge, therefore credible inspection technologies and methodologies for composite systems are to be developed. Technologies for evaluation real-time on-orbit integrity of thermal protections system (TPS) are to be developed. Develop and adapt NDE technologies supporting commercial space flight, identification of suspect counterfeit EEE parts, and establishing quality of additive manufactured components.
Activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Activity Lead/Center</th>
<th>FY 2015 Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 NDE Commercial Space Partner Liaison</td>
<td>K. Elliott Cramer /LaRC</td>
<td></td>
</tr>
<tr>
<td>2 Fracture Critical POD Validation</td>
<td>Charles Nichols/WSTF Ed Generazio/LaRC</td>
<td></td>
</tr>
<tr>
<td>3 NDE of Ablative TPS</td>
<td>Carlo Abesamis/JPL</td>
<td></td>
</tr>
<tr>
<td>4 Monitoring of Thermal Prot Sys</td>
<td>Larry Hudson/AFRC</td>
<td></td>
</tr>
<tr>
<td>5 Physical Standards for Welded Tubing</td>
<td>Ajay Koshti/KSC</td>
<td></td>
</tr>
<tr>
<td>6 Penetrant Inspection Corner Crack Detectability</td>
<td>Bradford Parker/GSFC</td>
<td></td>
</tr>
<tr>
<td>7 NDE Assess. of Underground Pipes</td>
<td>Son Le/SSC</td>
<td></td>
</tr>
<tr>
<td>8 NDE for Suspect Counterfeit EEE Parts</td>
<td>Carlo Abesamis/JPL</td>
<td></td>
</tr>
<tr>
<td>9 Quality Assurance of Composite Panels and Systems</td>
<td>Rick Russell/KSC</td>
<td></td>
</tr>
<tr>
<td>10 NDE Standards and Validation</td>
<td>Regor Saulsberry/WSTF</td>
<td></td>
</tr>
<tr>
<td>11 NNWG Newsletter Website</td>
<td>Charles Nichols/WSTF</td>
<td></td>
</tr>
</tbody>
</table>
Activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Activity Lead/Center</th>
<th>FY 2015 Approved</th>
</tr>
</thead>
</table>
| **A** | NDE Methods for Additive Manufacturing
a) Evaluate NDE Method
b) Manufacture Sample
c) Modeling | Eric Burke/LaRC | |
| **B** | Development of X-ray CT Performance Standards | Justin Jones/GSFC | |
| **C** | Pressure Vessel NDE Scanner – Probably of Detection (POD) Study (Commercial Partners):
a) Complete an in progress coupon level AL, Ti, and Inconel study
b) Utilizing NESC supplied liner and vessels conduct a full POD Study (minimum 29 defects)
c) Recommend modifications based on POD experience. | Regor Saulsberry/WSTF Buzz Wincheski/LaRC | |
Activities

<table>
<thead>
<tr>
<th>Title</th>
<th>Activity Lead CENTER</th>
<th>FY 2015 Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>D Smart COPV Integrated Demonstrator (SCID)</td>
<td>Regor Saulsberry/WSTF</td>
<td></td>
</tr>
</tbody>
</table>

8
Activity 1 - Content

- **Activity Title:** NDE Commercial Space Partner Liaison
- **Purpose:** Establish a Liaison Point-of-Contact (POC) between the OSMA NDE Program and the Commercial Space Companies
- **Justification:** An NDE liaison will help identify, build, monitor, and strengthen NASA-Commercial Partner bridges by working the commercial partners and the NDE Program’s Agency-wide NDE POCs to make space commercial partners aware of appropriate NASA expertise and capability that could be used to address NDE issues.
- **Summary:** To establish contacts in the NDE community at the Commercial Space Partners and work to understand their NDE needs and challenges. Inform the commercial partners of the agency NDE capabilities and establish grass-roots collaborations between NASA NDE researchers and their commercial counterparts. And to establish an informal Commercial Space NDE Working Group to facilitate technical interchange and collaboration.
Activity 2 - Content

• Activity Title: Fracture Critical Probability of Detection POD Process Validation

• **Purpose:** Validate POD methodologies used for applications to failure critical inspections required for quality assurance.

• **Justification:** We are seeing a variety of POD methods, having various degrees of integrity, being used for establishing the capability of inspection personnel and systems and this variability introduces unknown risk. Inconsistent inspection capabilities are being reported.

• **Summary:** Validation of Standards on inspection capabilities, and a comprehensive, decision-support document that provides guidelines on practical risk-informed decisions involving POD and confidence level utilizations.
Fracture Critical POD Process Validation

Annual Goals/Initiatives

- Review the most common 90/95 probability of detection (POD) methods and draft an appendix to the current standard, titled *Best Practices for Performing POD Analyses and Storing NDT Test Standards*.
- Create a centralized repository for POD specimens/capabilities essentially providing a living NDE capabilities table for NASA-STD-5009.

Accomplishments

- The Design of Experiments POD (DOEPOD) V 1.0 software was ported from Windows XP to Windows 7 V1.2 and now includes network support.
- Directed Design of Experiments for Validating Probability of Detection Capability of NDE Systems (DOEPOD) Manual v.1.2 was approved for NTRS publication – Sep ’14
- Familiarization training for LaRC/GSFC file structure and DOEPOD performed. – Oct ’14
- Electronic and hard copy data have been consolidated at WSTF. – Nov ’14
- Software requirements agreed to for Phase I of the NNWG POD Standards Library (NPSL): catalog and search capabilities. – Jan ’15

Risks/Challenges/Concerns

- Waiting on estimate from JSC IT to determine if *Phase I NPSL* tasks can be completed in FY15 with present funds.

Schedule Status/Coming Events

- Inventory all data; identify and fill gaps, should they exist.
- Alpha test/approve NPSL entry and query capabilities in June.
- Create a platform-independent POD analysis tool – FY16
 - Extract, interpret, and integrate macros from DOEPOD into NPSL.
 - Add internal and external validation test for MLE estimates (these have been draft coded into DOEPOD, but not released).
- Analyze and log the following NNWG POD standards – FY17
 NDE Methods: *UT, RT, ET, & PT*
 - ~101 flat plates with fatigue cracks (Al, INCO, & Ti)
 - 61 plate weld specimens with lack of fusion (Al & Ti)
 - 20 plates welded with an EDM notch specimens (Al, INCO, SS & Ti)
 - ~33 1” or 2” tubes welded with an EDM notch (INCO, SS)
 - ~61 1” or 2” tubes welded with lack of fusion (INCO & SS) and
 - 61 fastener hole crack specimens (Al & Ti)
Fracture Critical POD Process Validation

Notional “Inspection Standard” Interface – Unofficial, For Discussion Only

NNWG POD Standards Library

<table>
<thead>
<tr>
<th>Group Code:</th>
<th>Flaw ID:</th>
<th>A3-II-1-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard S/N:</td>
<td>A3 AII-1-1</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>Inconel 718 Flat Plate Fatigue Panel</td>
<td></td>
</tr>
<tr>
<td>Dimensions:</td>
<td>4 in x 8 in x 0.25 mils</td>
<td></td>
</tr>
<tr>
<td>Condition:</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Storage Loc.:</td>
<td>WSTF-B201 Rm 159</td>
<td></td>
</tr>
<tr>
<td>Availability:</td>
<td>In Use</td>
<td></td>
</tr>
<tr>
<td>Comment:</td>
<td>POD Study</td>
<td></td>
</tr>
<tr>
<td>Contact:</td>
<td>Charles Nichols</td>
<td></td>
</tr>
<tr>
<td>Flaw Class:</td>
<td>Crack</td>
<td></td>
</tr>
<tr>
<td>Location:</td>
<td>Bottom, X5.88, Y1.13 (inches) B/L3</td>
<td></td>
</tr>
<tr>
<td>Flaw Length:</td>
<td>60.8 mils</td>
<td></td>
</tr>
<tr>
<td>Width:</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>Depth:</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td>Flaw Units:</td>
<td>Angle [°]: 90</td>
<td></td>
</tr>
<tr>
<td>Ref:</td>
<td>X-axis</td>
<td></td>
</tr>
<tr>
<td>Your Permission Level for this standard:</td>
<td>Administrator</td>
<td></td>
</tr>
</tbody>
</table>

Reference Documents | Add to List | Edit this Standard | Return to Main Menu
Fracture Critical POD Process Validation

Notional “POD Overview” Interface

NNWG POD Standards Library

<table>
<thead>
<tr>
<th>Group Code:</th>
<th>A3</th>
<th>POD%: 90</th>
<th>Confidence%: 95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Inconel 718 Flat Plate Fatigue Panels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flaw Class:</td>
<td>Crack</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flaw Dimension:</td>
<td>Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flaw Range:</td>
<td>11.9 to 697.8 mils</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspection Method:</td>
<td>UT Inspection System FS6R546N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Acceptably Detectable Flaw Size:</td>
<td>43 mils</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Flaws:</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Inspectors:</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hits:</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Misses:</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Success Rate [%]:</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accepts:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>False Calls:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>False Call [%]:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![POD90/95 Inspection Reliability Assessment](chart.png)

Chart Options

- CDF
- CDF+
- CDF-
- Hit/Miss
- LCL
- POH
- POD

- Inspection Standards
- Reference Documents
- Estimate POD at Flaw Size
- Edit this POD Study
- Return to Main Menu

Your Permission Level for this Study: Administrator
• Activity Title: **Electric Field Imaging** (Manager’s Special)

• **Purpose:** Ability to image static and electrostatic potentials and fields

• **Justification:** There are currently no methods for remotely evaluating electrostatic and quasi-static fields emanating from, around, and passing through objects. *Remote health monitoring of astronauts.*

• **Summary:** The project work elements include optimized sensor designs for quantified images of static and electrostatic potentials and fields, 2D array. Suite of sensors designs for EFI of solid, liquids, gases, and plasmas
EFI: New Electrostatic Eyes

PTFE Panel

Wood Frame

EFI Electrostatic Potential Image of latent charge distribution generated by triboelectrically drawing the letters “NASA” on PTFE. The EFI image is overlaid onto the area scanned.

Tethers

38 Magnet wire
Polyvinyl Chloride
Cotton
38 Magnet wire
Rayon
Polyethylene
$V_0 - 0.55 \text{ V}$
$V_0 + 0.55 \text{ V}$

24"
Activity 4 - Content

• Activity Title: Monitoring of Thermal Protection Systems Using Robust Self-Organizing Optical Fiber Sensing Networks (a fundamental technology providing full field strain & temperature mapping for TPS, space partner COPVs)

• Purpose: Detect & evaluate MMOD (Micrometeoroid Orbital Debris) impact damage to thermal protection systems using embedded acoustic and fiber optic thermal sensor networks

• Justification: There are currently no in-flight inspection methods that can accurately and thoroughly assess the health of TPS and thereby ensure safe operation prior to reentry. The project is directly aligned with NASA Office of Chief Technologists Space Technology Roadmap TA09.1.5 – Entry Descent & Landing Systems, Instrumentation and Health Monitoring.

• Summary: The project work elements include the development of a robust, electronically-reconfigurable sensor network and a demonstrator prototype that consists of a segmented, circular ablative thermal protection system. The final outcome of the project will be incorporation of the monitoring system into a larger-scale TPS experimental structure at NASA in FY15.
Final System Design

• The final design of the systems consists of 8 triangular tiles
• The 8 tiles will cover a 120 degree segment of a 5 foot diameter circle
• Each tile has an optical and electrical connection to their adjacent neighbor
• Fiber-optic measurement system has 2 channels to connect to the sensing network
Complete TPS Monitoring System Demonstrator

Rear View
Progress – Simulation Testing

• Identifying damaged regions on tiles requires finding the sensors that heat at a higher rate than normal, and take into account small variations in the sensitivity of each FBGs

• Severity of TPS damage is evaluated through secondary sensing using FBG temperature sensors

• Results of large area heating test verified with local heating

• Damage detected in FBG sensors directly behind the simulated damage area and in sensors up to 20mm away
Activity 5 - Content

- **Activity Title:** Development of In-situ NDE Techniques and Physical Standards for Inspection of Welded Tubing used in Spacecraft
- **Purpose:** Develop a prototype eddy current scanner and physical validation standards for in-situ inspection of orbital tube welds in pressurized tubing assemblies.
- **Justification:** Closeout welds in spacecraft environmental control and propulsion system tubing often cannot be X-rayed due to access restrictions. An alternative to X-ray inspection is required to ensure the structural integrity of the welds.
- **Summary:** Custom eddy current probes and a prototype scanner have been designed, fabricated, and tested on tubing samples containing inner and outer diameter machined notches. Optimized procedures will be developed on additional representative samples containing crack-like flaws at various locations and orientations in tubing welds.
NDE/Development of In-Situ NDE for Welded Tubing used in Spacecraft

Orbital Weld Eddy Current Inspection Tool

FlawTech 0.115" Long x 0.015" Deep Tube I.D. Flaw

Circumferential Eddy Current Probe Response at 200 kHz Drive Frequency for the FlawTech Sample

The depth of the flaw measured 10.2 mils verses the target depth of 15 mils
Note the narrowed surface opening possibly due to cold working of the tube I.D.

Cross Section Through Center of the Flaw

The material microstructure at the tube wall O.D. and I.D. both show evidence of cold working, i.e. compressed grains

The surface of the sample adjacent to the flaw exhibited a “hammered” appearance (blue box) suggesting the sample was cold worked in order to reduce the surface opening. Opening is less in middle compared to either ends

Note the narrowed surface opening possibly due to cold working of the tube I.D.

100x Optical Image of a Cross Section after Etching

500x SEM Image Left end

500x SEM Image Right end
Activity 6- Content

• Activity Title: Investigation of Penetrant Inspection Corner Crack Detectability
• Purpose: Validate the penetrant inspection (PT) corner crack assumed detectable (a 90/95) size in NASA-STD-5009.
• Justification: The assumed detectable corner crack size for PT in NASA-STD-5009 is not based on inspection demonstration data. The size was increased during the migration from MSFC-STD-1249 to NASA-STD-5009. The PT corner crack size has become the most common flaw type driving designs.
• Summary: Four sets of corner crack specimens have been borrowed from JSC and are being evaluated for suitability for use in PT demonstration tests. These sets are all corner cracks at holes (CC04 in NASGRO). Production of set of specimens with cracks in rectangular plates (CC01 in NASGRO) is near completion. Suitable specimen sets will be used in capability demonstration testing. The results of the study will result in a validated PT corner crack assumed detectable (a 90/95) size in NASA-STD-5009.
CC01: Corner Crack in Rectangular Plate

Current NASA-STD-5009 PT CC01 \(c = 0.150" \ a = 0.100" \)

Proposed recommendation changing CC “a” from 0.100” to 0.075”

152 specimens, 154 low cycle fatigue cracks.
Activity 8 - Content

- **Activity Title:** *NDE for Suspect Counterfeit EEE Parts*
- **Purpose:** Select viable NDE tools and techniques for counterfeit electronic parts mitigation.
- **Justification:** New NDE tools and/or techniques using existing technology present opportunities to better meet the ever evolving threat of counterfeit parts.
- **Summary:**
 - Continue scanning components using the DTEK process and complete the assessment.
 - Integrate the Sonoscan Computed Tomography Equipment into the suite of counterfeit inspection tools at JPL.
 - Integrate real time X-Ray process into the suite of counterfeit inspection tools at JPL.
 - ChromoLogic’s new QuanTEK system has similarities to and differences from their predecessor **DTEK system, which was determined to be unacceptable.** The hope is that the differences of the QuanTEK system will overcome the shortcomings of DTEK.
Activity 9 - Content

- **Activity Title:** Quality Assurance of Composite Panels and Systems
- **Purpose:** To design and demonstrate the fundamental ability of NDE sensors for the measurement of damage and internal stresses affecting the quality and fitness for service of composite panels and systems
- **Justification:** Currently there is no simple method of determining the internal stresses of a composite panel or system. In particular there are no current screening techniques to monitor the internal stresses of these systems to determine assist in component acceptance for fitness for service or for predicting pending failures.
- **Summary:** Products for FY15 will include hardware delivery and an final report which will include development of a detailed plan for transition through flight qualification and testing.
Depth of penetration variation with frequency for MWM-Array FA49

Test set-up at NASA White Sands
Activity 10 - Content

- Activity Title: NDE Standards and Validation to Assist Commercial Partners and NASA Programs
- **Purpose:** 1) Develop voluntary consensus standards for fracture critical composites and composite overwrapped pressure vessels used in commercial partners and NASA missions. 2) Mature NDE procedures into quantitative accept-reject criteria for the entire life cycle, focusing on new high sensitivity NNWG eddy current scanner.
- **Justification:** Aligns with OSMA goals to support Space Launch System/ORION (Crew Vehicle), Commercial Crew human Mars missions by generating critical NDE standards and an eddy current scanner development to provide safer COPV.
- **Summary:** Provide fundamental NDE standards and equipment necessary to ensure safe composite and liners being used in NASA and commercial spacecraft. The internal eddy current scanner is matured and Standard will be document for application to NASA and commercial programs.
NDE Standards and Validation

Key Objectives/Initiatives

• Develop voluntary consensus standards for fracture critical composites and metals, hybrid composite/metal material systems, and additively manufactured parts to assist commercial partners and NASA missions

• Mature Scanning Eddy Current processes, do a coupon Probability of Detection study and move the refined processes to an ASTM standard

Accomplishments

• Flat Panel Composites:
 – 5-yr. approvals: E2581/Shearography; E2582/Thermography; E2661/Acoustic Emission, E2662/Radiology; and E2533/NDE Guide
 – Work initiated on a new flash thermography standard

• Hybrid Composite/Metal Material Systems:
 – ASTM D2982-14 (NDE of thin-walled metal liners) approved
 – ASTM D2981-15 (NDE of composite overwraps) approval pending

• Fracture critical metal structures:
 – Production Eddy Current scanner to be completed Feb. 2015. POD study in planning phase; refined procedures will go in an ASTM standard

• Additively manufactured parts:
 – Team assembled, draft standard begun (WK47031)

Risks/Challenges/Concerns

Technical
• Composite effect-of-defect hard to determine
• Detecting critical initial flaw thin metallic is hard
• NDE not incorporated in additive manufacturing

Safety
• Commercial partners need help with composite vessels and liners

Budget
• Probability of Detection studies needed to validate NDE methods are very expensive

Schedule Status/Coming Events

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eddy Current coupon-level POD complete</td>
<td>8/2014</td>
</tr>
<tr>
<td>WK29068 (NDE of metal liners) approved as ASTM D2982-14</td>
<td>9/2014</td>
</tr>
<tr>
<td>WK43438/E2581 (shearography of polymer composites) reapproved</td>
<td>12/2014</td>
</tr>
<tr>
<td>WK46042/E2582 (thermography of polymer composites) reapproved</td>
<td></td>
</tr>
<tr>
<td>WK47031 (NDE of additive manuf.) draft completed, team assembled</td>
<td></td>
</tr>
<tr>
<td>ASTM E07.10 Task Group on NDE of Aerospace Materials meeting</td>
<td></td>
</tr>
<tr>
<td>WK44903/E2662 5-year rev status (radiology of polymer composites)</td>
<td>1/2015</td>
</tr>
<tr>
<td>Initiate E2661 5-year rev (acoustic emission of polymer composites)</td>
<td></td>
</tr>
<tr>
<td>EC production scanner scheduled completion and POD start</td>
<td></td>
</tr>
<tr>
<td>WK29034 (NDE of overwrap) ASTM D2981-15 approval expected</td>
<td>2/2015</td>
</tr>
<tr>
<td>WK40707 (active thermography of composites), begin writing</td>
<td></td>
</tr>
<tr>
<td>ASTME07.10 Task Group on NDE of Aerospace Materials meeting</td>
<td>6/2015</td>
</tr>
<tr>
<td>Closure/status on E2661, WK40707, WK44903, WK47026 (E2533), and WK47031. FY16 plan due.</td>
<td>9/2015</td>
</tr>
</tbody>
</table>
NDE Standards and Validation

ASTM E07
NDE Standards

Advanced Materials

2005

- Standard Practice for Ultrasonic Testing of Flat Panel Composites and Sandwich Core Materials Used in Aerospace Applications
 Designation: E1580 - 97

- Standard Guide for Nondestructive Testing of Polymer Matrix Composites Used in Aerospace Applications
 Designation: E2439 - 99

- Standard Practice for Ultrasonic Testing of Sandwich Composites, Sandwich Structures, and Sandwich Core Materials Used in Aerospace Applications
 Designation: E3424 - 07

2010

- Standard Practice for Ultrasonic Testing of Sandwich Composites, Sandwich Structures, and Sandwich Core Materials Used in Aerospace Applications
 Designation: E3424 - 07

2011

- Standard Practice for Infrared Flash Thermography of Composite Panels and Repair Patches Used in Aerospace Applications
 Designation: E2903 - 98

2012

- Standard Practice for Acoustic Emission Examination of Plate-like and Flat Panel Composite Structures Used in Aerospace Applications
 Designation: E2903 - 98

2013

- Composite Overwrapped Structures

- Thin-Walled Metallic Structures

- 5-Yr Revisions

2014

- New Standard

- New Practice for Infrared Flash Thermography of Aerospace Composites
 Designation: E29034

2015

- New Eddy Current Standard

2016

- New Standards

- Feedstock Qualification
- NDE destructive test data corroborated
- In-Situ Process Monitoring
- Standardized NDE build records
- Flight Hardware Certification

ASTM F42
AM Standards
Existing Standards

- Terminology
- Reporting Data
- Manufacturing File Formats
- General and ELI Ti 6-4 Spec
- UNS N07718 and N06625 Specs

- New Standards

- Equipment Performance, Conditioning & Eval
- Design Guides
- Feedstock Character, Dual & Traceability
- EBM Ti6-4 Spec
- Powder Bed Fusion of Co-Cr
- Powder Bed Fusion & Extrusion of Polymers
- LS of Polymers for Aerospace Components
- AM Roadmap Guide
- Mechanical Properties

ASTM WK43112

- Adopt Standards

- 5-Yr Revisions

NDE of AM Standards

- Adopt Standards

- New Eddy Current Standard

- Adopt Standard

- New Standards

- Feedstock Qualification
- NDE destructive test data corroborated
- In-Situ Process Monitoring
- Standardized NDE build records
- Flight Hardware Certification

- Adopt Standards
NDE Standards and Validation

Designation: X XXXX-XX

Work Item Number: 47031
Date: Dec. 31, 2014

Standard Guide for Nondestructive Testing of Additively Manufactured Parts Used in Aerospace Applications

This standard is issued under the fixed designation XXXX; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This Guide discusses the use of established and emerging nondestructive testing (NDT) procedures used during the life cycle of additive manufactured metal, plastic and ceramic parts.

1.2 The parts covered by this Guide are used in aerospace applications; therefore, the inspection requirements for discontinuities and inspection points will, in general, be different and more stringent than for materials and components used in non-aerospace applications.

1.3 The metals under consideration include but are not limited to ones made from aluminum alloys, titanium alloys (Ti-6Al-4V), nickel-based alloys, and stainless steels. The plastics under consideration include but are not limited to acrylonitrile butadiene styrene (ABS), polyether ketone (PEEK). The ceramics under consideration include but are not limited to regolith, alumina, zirconium oxides, and silicon carbide.

NOTE: The combustion and ignition properties of finished parts used to be taken into account for safe use in aerospace applications.

1.4 Protocols for controlling input materials, and established processes and post-process methods are cited whenever possible. The processes under consideration include but are not limited to Electron Beam Free Form Fabrication (EBF), electron beam melting (EBM), Direct Metal Laser Sintering (DMLS), and Selective Laser Melting (SLM).

1.5 The Guide describes the application of established and emerging NDT procedures, namely, Computed Tomography (CT, Section 7), Eddy Current Testing (ECT, Section 8), Neutron Diffraction (Section 9), Penetrant Testing (PT, Section 10), Resonant Testing (Section 11), Thermoacoustic Testing (TT, Section 12), Structured Light (SL, Section 13), and Ultrasonic Testing (UT, Section 14). These procedures can be used by compliant engineering organizations for detecting and evaluating flaws and defects during and after fabrication.

1.6 This Guide describes established practices that have a foundation in experience, and new practices that are yet to be validated. The latter are included to promote research and later elaboration in this Guide as methods of the former type.

This Guide is under the jurisdiction of ASTM Committee E07 on Nondestructive Testing and is the direct responsibility of Subcommittee E07.10 on Additively Manufactured NDT Methods. Current drafts approved XXX, XX, XXXXX. Published XX XXXXX.
Activity Title: **Accomplish Multi-purpose Pressure Vessel NDE Scanner Probability of Detection (POD) Study**

Purpose: Is to allow quantification of the Multi-purpose Pressure Vessel NDE Scanner flaw detection probability of detection capacity.

- Should allow widespread replacement of out dated dye penetrants methods which are currently not capable of detecting small critical flaws in high performance composite pressure vessel liners and thin wall metallic vessels and provide other quality screening functionality

Justification: Commercial Spaceflight recently had a serious liner failure pointing to an urgent need to produce and quantify the performance of this NDE system. The need for sensitive and reliable flaw screening has been a well-recognized and long-term need in the composite pressure community of practice.

Summary: Once validated by a POD study, this system should be “game changing” in terms of manufacturing in-process NDE and should significantly improve our composite overwrapped and conventional pressure vessel safety and reliability.
NDE Standards and Validation

Above: Internal Articulation Arm

Above: Coupon POD Results, 90/95 confidence is achieved.
Below: X-Y Scanner Setup for Coupon Scanning, EC Scan of Coupon

Above: WSTF Production Scanner Modified for Eddy Current Scanning

Thickness Mapping and Flaw Detection Eddy Current Probes
Activity D - Content

- **Activity Title:** *Smart COPV Integrated Demonstrator (SCID)*
- **Purpose:** Reduce current high composite vessel risk: 1) Down-select and applying mature NDE methods; 2) push the above NDE methods from Technology Readiness Level (TRL) 3 to a TRL 6 flight demonstration unit, 3) improve the reliability of composite overwrapped pressure vessels in their resistance to MMOD and handling damage, 4) improve vessel reliability by implementing new NDE technologies used during manufacturing to reduce variance.
- **Justification:** Unresolved issues with the long-term use of pressure vessels and other fracture critical hardware in NASA missions still persist, requiring acceptance of risk and overreliance on analytical models versus experimentally validated NDE accept-reject criteria.
- **Summary:** 6 NASA Centers have evaluated 7 candidate NDE methods for use during and after manufacturing, and eddy current, multi-axial strain grids, acoustic emission, and piezoelectric smart strips have been down-selected. After flight demonstration tests, a TRL 9 autonomous structural health monitoring unit will be delivered.
Smart CPOV Technologies Being Advanced

COPV Scanner – WSTF/LaRC (Structure QA)
- Sensor
- Internal Stage
- External Stages
- 300 Liter liner

Liner Crack Detection
- Calibrated Liner Scan – OD/ID Comparison
- Liner Thickness Measurements

FOSS/FBG Strain Measurement - AFRC
- Mature High Density Strain Mapping SHM

Distributed Impact Detection System - LaRC
- Distributed Impact Detection System
- Flight Space Debris Impact Detection (IVHM)
- Magnetic Stress Gage System – KSC
- Thickness Changes and Ply Stresses

Acellent PZT Smart Strips - MSFC
- Acellent PZT Smart Strips
- Composite Damage Detection, Location & Quantification
Additive Manufacturing
Activity A - Content3

• Activity Title: Foundational Methodology for Certification of Additive Manufacturing (AM) Parts and Materials

• Purpose: Develop certification methodologies designed to ensure the production of safe and reliable AM parts for spaceflight applications. Emphasis will be placed on metals and AM processes used in fabrication of propulsion system components.

• Justification: AM is a rapidly emerging technology and there is a recognized lag in AM process and part validation and certification methodologies. NDE has been identified as one key technology to close this gap.

• Summary: The OSMA state of the art AM report will be used to define highest priority needs/gaps for NDE of AM parts. Resources will be used to down select and optimize NDE techniques that will then be combined with NDE modeling for a cost-effective methodology for verifying part quality. A workshop will be held mid year to assess progress and further define needs.
Types of Printing

- Fused deposition modeling (FDM)
- Stereolithography (SLA)
- 3D Printing (3DP)
- Laminated Object Manufacturing (LOM)
- Syringe Extrusion
- Direct Metal Laser Sintering (DMLS)
- Laser Engineered Net Shaping (LENS)
- Ultrasonic Additive Manufacturing (UAM)
- Electron Beam Freeform Fabrication (EBF³)
- etc

1 Dr. Scott Roberts (JPL) Understanding the Additive Manufacturing Process
Industry, government and academia have been actively solicited to share their NDE experience relevant to additive manufacturing
NDE of Additive Manufacturing
State-of-the-Discipline Report

<table>
<thead>
<tr>
<th>Program/Discipline Health Status</th>
<th>Background Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow Status for:</td>
<td>This technology is still emerging and rapidly changing</td>
</tr>
<tr>
<td>- Develop NDE Certification and Qualification protocols to assure part quality and acceptability</td>
<td>Recommendations will be made to guide Agency investments in NDE vis-à-vis additive manufacturing, which will ensure NASA is properly poised to use additively manufactured hardware in future ground and flight applications.</td>
</tr>
<tr>
<td>- Develop S-Basis design allowables using NDE</td>
<td></td>
</tr>
<tr>
<td>- Mature NDE protocols used during and after manufacturing</td>
<td></td>
</tr>
<tr>
<td>Green Status for:</td>
<td>The major gaps and recommendations identified in the report are:</td>
</tr>
<tr>
<td>- Identify NDE technology gaps to guide future NASA investments</td>
<td>1. Lack of NDE and design allowables data specific to additive manufacturing</td>
</tr>
</tbody>
</table>

Proposed Highlights

| Prioritize and align Agency NDE assets vis-à-vis additive manufacturing |
| Develop concise NDE-based Qualification and Certification protocols |
| Incorporate NDE best practice into voluntary consensus standard(s) |
| Build relationships with commercial space partners, government agencies, industry, academia and the European Space Agency |
| Accelerate use of additive manufacturing in NASA missions |
| Assure quality and safety of parts |

- Maintain report as a living document
- Nurture relationships especially with industry and the European Space Agency
- Exploit US-European synergies to bootstrap NASA NDE qualification and certification protocols
NDE of Additive Manufacturing
State-of-the-Discipline Report

NDE-Specific Recommendations

• Develop mature techniques for **NDE of finished parts**
• Apply NDE to understand effect-of-defect, including **establishment of acceptance limits** for certain defect types and defect sizes
• Apply NDE to understand scatter in design allowables database generation activities
• Fabricate physical **reference standards** to verify and validate NDE data
• Develop **in situ process monitoring NDE** to improve feedback control, to maximize part quality and consistency, and to obtain certified parts that are ready-for-use directly after processing
• Develop better **physics-based process models** using and corroborated by NDE
• Develop NDE-based **qualification and certification protocols for flight** hardware that rely on testing and modeling
• Develop **ASTM E07-F42 standards** for NDE of AM parts
Activity B - Content

• Activity Title: **Development of X-ray Computed Tomography Performance Standards**

• **Purpose:** Design and produce X-ray Computed Tomography (CT) performance standards for use at all NASA Centers performing CT.

• **Justification:** CT has become a mainstream NDE technique across the Agency with systems at GSFC, GRC, JSC, KSC, LaRC and MSFC. Unlike two-dimensional radiography, there are no enhanced computed tomography image quality indicators IQI targeting AM for industrial CT. This task will design and produce **CT IQIs that will then be used to document the capabilities of all the Agencies’ CT systems.**

• **Summary:** ASTM E1695 dictates that CT resolution be based on the modulation transfer function calculated across the exterior edge of a round coupon. While this may be sufficient for an order of magnitude assessment, the image sharpness of the exterior edge is not representative of interior boundaries and only serves as an indirect measure. We propose to develop IQIs more consistent with NASA-related materials and using internal features/defects more representative of actual inspections.
Development of X-Ray Computed Tomography Performance Standards

Fabrication of Preliminary X-ray CT Image Quality Indicators using Additive Manufacturing

<table>
<thead>
<tr>
<th>Material</th>
<th>PH1 Stainless Steel (15-5 analog)</th>
<th>Titanium 6Al-4V</th>
<th>Vero White Plus RGD835 (proprietary photopolymer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>GPI Prototype and Manufacturing Services</td>
<td>GPI Prototype and Manufacturing Services</td>
<td>Alio Designs</td>
</tr>
<tr>
<td>Build Method</td>
<td>Direct Metal Laser Sintering</td>
<td>Direct Metal Laser Sintering</td>
<td>PolyJet</td>
</tr>
<tr>
<td>Layer Thickness (µm)</td>
<td>40</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Minimum Feature (mm)</td>
<td>0.3</td>
<td>0.5</td>
<td>1.6</td>
</tr>
</tbody>
</table>
NASA AM Physical Reference Standards

<table>
<thead>
<tr>
<th></th>
<th>MSFC-GRC</th>
<th>GSFC</th>
<th>LaRC</th>
<th>JSC-LaRC</th>
<th>KSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM process method</td>
<td>DMLS</td>
<td>DMLS (metal), LS (plastic)</td>
<td>LS</td>
<td>EBF₃</td>
<td>EBM</td>
</tr>
<tr>
<td>alloys</td>
<td>titanium, Inconel, and aluminum</td>
<td>titanium, SS PH1, vero-white RGDB835</td>
<td>SS</td>
<td>titanium</td>
<td>titanium</td>
</tr>
<tr>
<td>reference standard geometries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>features interrogated</td>
<td>complex geometries; large/thick/dense and very thin cross sections; (universal NDE standard, slabs, rods, gage blocks)</td>
<td>rectangular prisms, rows of cylinders, cylinders, flat-bottom holes, cone</td>
<td>steps, flat bottom holes</td>
<td>bead arrays, steps, holes</td>
<td>36 printed in-holes beginning at surface; 9 printed in-spheres internal to the part; cold plate (future)</td>
</tr>
<tr>
<td>AM defects interrogated</td>
<td>porosity/unfused matl. (restart, skipped layers), cracks, FOD, geometric irregularities</td>
<td>hole roughness and flatness/centricity</td>
<td>porosity, residual stress</td>
<td>grain structure, natural flaws, microstructure variation with EBF₃ build parameters</td>
<td>internal unfused sections</td>
</tr>
<tr>
<td>NDE method(s) targeted</td>
<td>post-process 2 MeV and μCT; PT, RT, UT, ET</td>
<td>post-process ? MeV CT</td>
<td>post-process ? MeV CT</td>
<td>post-process UT, PAUT</td>
<td>in-process NDE, not UT</td>
</tr>
<tr>
<td>Comments</td>
<td>collaboration with MSFC AM Manufacturing Group & Liquid Engines Office</td>
<td>flat IQI not suitable due to 3D CT artifacts</td>
<td>x-ray CT LS step wedge</td>
<td>Transmit-Receive Longitudinal (TRL) dual matrix arrays</td>
<td>collaboration with CSIRO</td>
</tr>
</tbody>
</table>
Questions?
Foundational Methodology for Additive Manufacturing:
Ultrasonic Phased Array Inspection

2015 Key Objectives/Initiatives
- Make phase 1 Ti 6-4 AM specimen small billet samples using Electron Beam Free Form (EBF3) welding. (LaRC, JSC).
- Procure Ti 6-4 wrought material specimen. (JSC)
- Machine pre-programmed flaw set in base materials for phase 1 specimens. (JSC)
- Procure appropriate ultrasonic phased array (PA) probes for Olympus Omniscan (JSC).
- Procure ultrasonic simulation software ESBeamTool 5/6 and preform preliminary simulation of various beam angles.

Accomplishments
- First of three deliverable blocks for FY15 has been deposited
 - Approximately 20 lbs of deposited Ti-6Al-4V
 - Roughly 4” wide by 4” tall by 7” long
 - Slice taken off the end via wire EDM for future analysis
 - No visible discontinuities in slice
 - Future blocks will be path sequence variations of same geometry
- ESBeamTool5 Software Procured

Risks/Challenges/Concerns
- Ultrasonic instrument to be procured in FY 2016 due to cut in funding in FY 2015.
- Current implementation of ESBeams Tools does not account for possible changes in sound velocity due to EBF3 manufacturing process.

Schedule Status/Coming Events
- Evaluate Olympus PA probes using vendor demonstration before selecting PA and instrument for procurement.
- Procure appropriate demonstrated PA probe.
- Procure Ti 6-4 wrought material specimen
Annual Goals/Initiatives

- Improve the AM process (reduce costs and improve quality) by developing, validating and implementing NDE models.
- Investigate thermal modeling technique to simulate heat flow interaction with various flaw types during the additive manufacturing processes. Validate the thermal NDE model with acquired thermal data using electron beam or laser sintering (LS).

Accomplishments

- Designed and fabricated sensor mounting ring installed on NASA Langley electron beam free form fabrication (EBF3) system. This ring will allow for multiple sensors to be mounted for closed loop control development.

Risks/Challenges/Concerns

- Initial focus will be to leverage existing systems for experimental data, however existing commercial additive manufacturing systems can be difficult to modify to implement additional sensors. NASA Langley electron beam facility is not a commercial system and will allow for modification to add NDE sensors.

Schedule Status/Coming Events

- Identify whether initial focus will be EBF3 and/or LS, depending on accessibility of facilities and specimens
- Identification/development of appropriate sample geometry and material constituents → 02/2015
- Identification/development of appropriate NDE modeling techniques for EBF3 and/or LS processes and for characteristic flaw types → 09/2015
An Assessment of NDE Capability and Materials Characterization for Complex Additive Manufacturing Aerospace Components

James L. Walker (MSFC)
Richard E. Martin (GRC)
OBJECTIVES

Task 1

• Perform a fundamental investigation of the correlation between nondestructive evaluation (NDE), mechanical testing, microstructure and processing for typical/naturally-occurring flaws in additive manufacturing (AM) components.
 ➢ Titanium, Inconel and Aluminum alloy
 ➢ Direct metal laser sintering (DMLS) and electron beam melting (EBM)
• Coordinate with MSFC AM Materials and Processes Team to evaluate materials study samples and Liquid Engines Office to evaluate engine components (some with real defects)
• Use NDE to select specimens for testing to failure, and then correlate the failure site back to the NDE results and subsequent fractography.
• Study the effect of hot isostatic pressing (HIP) on AM components using NDE and photomicroscopy to track the change in defect states.
• Compare results with those from conventionally formed materials of similar alloy.

Task 2

• Conduct a round-robin study of NDE methods suitable for complex AM components
 ➢ Universal NDE reference standard as initial test case
 ➢ Internal NASA NDE sources and outside entities
 ➢ Produce a list of state-of-the-art NDE methods for complex AM components including their strengths and weaknesses
BACKGROUND

- **Additive manufacturing**
 - Has the potential for creating complex parts with a significant cost and time savings
 - Pitfalls due to unknowns and variations in the AM process
 - Uniquely different grain structure and flaw morphologies
 - Highly complex and hidden geometries will limit access for NDE

- **Parties highly interested in AM materials**
 - NASA (Code Q has identified AM NDE as a critical focus area)
 - Department of Defense (DOD)
 - Aerospace engine manufacturers

- **Prior Work**
 - Propose to build on and leverage recent fundamental and applied NDE research efforts for AM components

- **Primary focus of this work**
 - Establish fundamental relationships between processing, mechanical testing, materials characterization, and NDE
 - Understand what NDE methods are best utilized for characterizing actual AM produced components
• Two year effort with two parallel running tasks

Part 1
• Focus on the effects-of-defects
• Determination of typical flaws and sizes
• Test matrix for mechanical testing, NDE, and materials characterization
 ➢ Inconel, Titanium, Aluminum alloy
 ➢ Direct metal laser sintering and electron beam melting
• Design and fabricate samples with a range of expected defect geometries
 (verified through microstructure analysis)
• NDE used to characterize the flawed samples
• Mechanical test the flawed samples
• Correlate the flaws back to the NDE results
• Performed fractography to assess these flaws and correlate with NDE results
• Study the effect of HIP processing on flaw characteristics

Part 2
• Request for information (RFI) to evaluate complex AM components
PART 1. EFFECTS-OF-DEFECTS STUDY

Prior work:

• MSFC: Materials study and NDE
 ➢ CT of many DMLS engine components
 ➢ Characterization of DMLS Materials for SLS Engine Components (Beshears, Brown, Wells) => Funded by the Advanced Developments Office in 2013 to investigate applications of NDE to AM materials, methods for defect standard formation, and effects of defects on material properties.

• GRC: Baseline NDE development for commercial aerospace company engine components
 ➢ Includes use of CT, penetrant, and ultrasonics (UT) prior to mechanical testing of AM Ti alloy specimens to characterize quality of AM manufactured test samples and correlate with failure sites and metallographic characterization
 ➢ Includes development of CT method for complex-shaped components

Schedule:

<table>
<thead>
<tr>
<th>Task</th>
<th>Q1-Q2</th>
<th>Q3-Q4</th>
<th>Q5-Q6</th>
<th>Q7-Q8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consult AM manufacturing and Engine Project for critical flaws</td>
<td></td>
<td></td>
<td>XX</td>
<td></td>
</tr>
<tr>
<td>Construct test matrix</td>
<td></td>
<td></td>
<td>XX</td>
<td></td>
</tr>
<tr>
<td>Design/fabricate/verify samples with a range of defects for microstructural characterization</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Design/fabricate/verify samples with a range of defects for NDE characterization</td>
<td></td>
<td>XX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluate NDE capability</td>
<td></td>
<td></td>
<td>X</td>
<td>XX</td>
</tr>
<tr>
<td>Perform materials testing on select samples to see effect of defect(s)</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Report</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
RECENT CT SCANS OF AM ENGINE RELATED PARTS

Inconel chamber

Inconel axial compression joint

DMLS Aluminum cover
RECENT \(\mu\)CT SCANS OF AM ENGINE RELATED PART
DMLS Aluminum cover

- \(\mu\)CT resolves part features
- Depth of indication on back of part revealed
RECENT μCT SCANS OF AM ENGINE RELATED PART

DMLS Aluminum Cap

- μCT resolves part features.
- Pinhole indication on top of cap resolved in detail. Identified as a through hole with CT.
- μCT resolution $\approx 28\mu\text{m}$.

Volume Rendering of Al Cap

CT slice through pinhole feature.
RECENT DEFECT CREATION EFFORTS – SKIPPED LAYERS

- Evaluating before and after HIP
- Samples have 4, 6 and 8 skipped layers
- Evaluated with the MSFC 2MeV CT system, could only see largest number of skipped layers
- Pulled two samples from materials testing lot and sent to GRC for μCT
- Plan to get samples being cut from these bars for tensile testing and perform μCT

Plane of skip-layer defect

Skip-layer defect covers half the cross-section and is outlined by 0.010 of solid wall.
\[\mu\text{CT} \text{ was able to resolve skipped layers. As scanned resolution } \approx 28\mu\text{m}\]

\[\text{Thickness and density of material are limiting factors for } \mu\text{CT}\]

\[\text{Plan to re-scan samples following sectioning and prior to mechanical testing.}\]

Various CT views of an Inconel bar with skipped layers at the center. Views show extent of defect across width of sample.
♦ Inconel rod with restart type condition. Various times between restart on each rod.
♦ μCT was able to resolve internal indications at restart location. As scanned resolution ~10μm
♦ μCT will be conducted on remaining locations to correlate NDE indications to length of time between restart.

Photo of DMLS Inconel rod with various “restart” event features. Lines in sample show locations of restart events. Box indicates approximate location of CT data.
RECENT EFFORTS ON FRACTOGRAPHY – CT CORRELATION

- Performing micro-focus CT scans of Ti 6-4 tensile and fatigue test samples and comparing μCT results to fracture surface analysis.

Optical μCT Slice μCT overlay on Optical

Ortho Views to show location of μCT Slice
PART 2. DETECTION CAPABILITY DEMONSTRATION FOR COMPLEX GEOMETRY PARTS

Purpose: Perform an industry search for state-of-the-art NDE methods applicable to complex AM components.

Task Description: Will utilize a universal NDE reference standard with dimensional and structural defects to perform a nationwide survey of NDE vendors and researchers.

Current work:
2013 Tech Excellence funding
- Attempted to fabricate an Inconel POGO-Z baffle with programmed defects but it kept failing the build
- Designed and fabricating a series of modular components that will allow assembly of a complex AM part

Schedule:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Q1-Q2</th>
<th>Q3-Q4</th>
<th>Q5-Q6</th>
<th>Q7-Q8</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-house evaluation of part</td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepare a request for information solicitation to evaluate a complex AM part and submit</td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collect responses and prepare a down select/priority plan</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Send part out for testing, collect the results and tabulate findings</td>
<td></td>
<td>X</td>
<td>XX</td>
<td>X</td>
</tr>
<tr>
<td>Report</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>