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SEASONAL VARIATIONS OF THE JAMES WEBB SPACE 
TELESCOPE ORBITAL DYNAMICS 

Jonathan Brown,* Jeremy Petersen,† Benjamin Villac,‡ and Wayne Yu§ 

While spacecraft orbital variations due to the Earth’s tilt and orbital eccentricity 
are well-known phenomena, the implications for the James Webb Space Tele-
scope present unique features. We investigate the variability of the observatory 
trajectory characteristics, and present an explanation of some of these effects us-
ing invariant manifold theory and local approximation of the dynamics in terms 
of the restricted three-body problem. 

INTRODUCTION 

The James Webb Space Telescope (JWST) is a flagship mission scheduled for launch in 2018, 
and it will be the scientific successor to the Hubble Space Telescope and the Spitzer Space Tele-
scope. The project is an international collaboration between National Aeronautics and Space Ad-
ministration (NASA), the European Space Agency (ESA), and the Canadian Space Agency, and 
NASA Goddard Space Flight Center is managing the development. The JWST mission will focus 
on the infrared spectrum in order to detect the redshifted light from very early in the universe, 
which will fill a gap in the current range of astrophysical observations and allow the exploration of 
a whole new set of fundamental scientific questions ranging from the formation of the universe to 
the origin of planetary systems. 

Given the sensitivity of the instruments to stray light, the mission will orbit in the vicinity of the 
Sun-Earth/Moon L2 libration point, allowing the optical element to remain pointed away from the 
Sun, the Earth, and the Moon at all times. The near constant geometry of the trajectory relative to 
the Earth as it orbits about the Sun allows the observatory to map large swaths of the celestial 
sphere while providing long-duration communication links to the Earth. The orbital dynamics in 
the L2 region also support the spacecraft mass-budget constraints with minimal transfer and orbit 
maintenance costs, as well as slightly reduced irradiation from the Sun and less magnetospheric 
contamination as compared to a low-Earth orbit. Thermal constraints on the instruments impose 
the need for a 163 square-meter sunshield as shown in Figure 1, the presence of which significantly 
couples the orbital and attitude dynamics as the Sun’s rays impinge on this surface. In addition to 
the need for the sunshield, thermal requirements also prevent the placement of thrusters on the 
instrument side of the observatory; thus no Sun-ward maneuvers are allowed, which tightly couples 
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the possible science orbits and their transfer trajectories to the launch date. Shadows, or eclipses of 
the spacecraft by either the Earth or the Moon, are not permitted at all during the mission. All of 
these constraints conspire to limit the maneuverability of the spacecraft and couple the orbital dy-
namics to the rhythms of the Earth, Moon, and Sun. 

 

Figure 1. JWST spacecraft overview.* 

The limitations resulting from the spacecraft design are counter-balanced by the science focus 
of the mission, which imposes few restrictions on the type of libration point orbit (LPO). The mis-
sion only requires the orbit to remain within a (relatively large) region in the vicinity of L2 for a 5 
year operational mission (with a goal of 10 years) following the 6 month commissioning phase. 
While the project schedule is geared toward an October 2018 launch date, the variability in possible 
trajectories must be taken into account in any analysis. As such, three reference orbits, shown in 
Figure 2, are currently used for analysis. These trajectories are represented in the L2-centered ro-
tating libration point (RLP) coordinate system; the X axis points from the Sun to the Earth-Moon 
barycenter, the Z axis points to the north ecliptic pole, and the Y axis completes the right handed 
system. Note in particular that the orbits resemble a northern or southern quasi-halo that shifts 
geometry over time. This paper aims to provide an overview of such orbital variations with launch 
epoch and to extract the underlying dynamical mechanisms driving such phenomena.  

This paper builds on the previous detailed analysis of individual phases of the mission. Launch 
opportunities which satisfy all mission requirements have been computed for the 14 months fol-
lowing the nominal launch date of October 2018.1 In particular, the observed effects of the various 
mission constraints on the launch window have been discussed and include a reduction of launch 
opportunities due to the Moon’s influence and around the solstices. While the presence of the Moon 
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explains some of these observations, a more detailed explanation of some of these observed varia-
tions was not addressed in that paper. 

 

Figure 2. JWST Design Reference Trajectories. 

Complementary to this, the transfer phase has been studied, including computation and statisti-
cal analysis of the three mid-course correction (MCC) maneuvers.2 This work described the algo-
rithms and maneuver constraints to achieve such transfers and showed the expected dispersions of 
the transfer cost with respect to various model parameters. While some of these results will be 
reviewed here, our focus will be in explaining why such a transfer strategy leads to the observed 
reference trajectories that have been computed in the launch window analysis. 

We show in the following that the transfers are close to ballistic, and that an underlying inter-
pretation of the coupling of the science orbit with the launch date in terms of invariant manifolds 
exists. Sample science orbits can be matched with approximate orbits in the Circular Restricted 
Three-Body Problem (CR3BP), demonstrating the intersection of the transfer manifolds with the 
Earth-fixed launch insertion constraint at the epoch. As the Earth rotates on its axis, the intersection 
leads to daily variation in the target orbits, while the yearly eccentric motion around the Sun slowly 
shifts the location of these invariant manifolds relative to the insertion condition. 

To proceed with this analysis, the next section reviews the main orbital constraints for the JWST 
mission and summarizes the observed seasonal variation phenomena during the initial mission anal-
ysis. The following section focuses on the geometry and dynamics of an approximating CR3BP 
model and the relation of the JWST orbit transfer with invariant manifolds of period and quasi-
periodic orbits. 
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JWST ORBIT CONSTRAINTS AND VARIATIONS OVERVIEW 

This section overviews the main constraints and observed orbital variation phenomena in ana-
lyzing the full range of launch opportunities. First the insertion condition is reviewed, followed by 
the transfer limitations and an overview of the launch window analysis. The observed variations 
are the drivers for the subsequent analysis, but the constraints also provide a first hint at their cause. 

Insertion State Constraint 

ESA will provide an Ariane 5 launch vehicle which, after departing Kourou, French Guiana, 
will inject JWST into a highly eccentric orbit.1 There are three possible flight programs (FP) that 
have been selected, each corresponding to a different apogee radius for the injection orbit: 1.02 x 
106 km for FP1; 1.06 x 106 km for FP2; and 1.10 x 106 km for FP3. The target inclination for all 
three programs is 5.59°. The FP that provides the longest continuous window of launch opportuni-
ties that satisfy all mission orbit requirements for a given day will be selected. The following anal-
ysis will only use FP2 to describe the results. The main effect of the various flight programs is to 
reduce the initial correction maneuver but does not affect the end science orbit. 

The three target apogee altitudes were selected for the average distance from Earth to L2, ap-
proximately 1.5 x 106 km. However, this distance varies over the course of a year due to the eccen-
tricity of Earth’s orbit; in early January, when Earth is at perihelion, L2 is about 1% closer to Earth, 
and at apogee it is about 1% farther away.3 This makes the correction maneuver more likely to 
overshoot the libration point in winter, and more likely to undershoot in summer. 

Each of the three flight programs leads to a fixed insertion state defined in an Earth-centered, 
Earth-fixed (ECEF) coordinate system, and therefore the inertial position of this injection state 
varies with time as the Earth rotates during the daily launch window and as the orientation of the 
poles changes over the course of a year relative to the RLP frame. The annual effect can be seen by 
plotting the injection state in an Earth-centered RLP frame for a single time within the launch win-
dow over a full year, as shown in Figure 3(a), where every 30th day is highlighted in red. 

 
(a)                                                                                 (b) 

Figure 3. Variation in ECEF injection position viewed in RLP (a) for 11:30 UTC launch over 1 year, 
and (b) for all launch epochs over 1 year.  
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This ‘figure 8’ shape results from the obliquity of the ecliptic and the eccentricity of Earth’s 
orbit around the Sun; these are the same underlying mechanisms which create the solar analemma, 
so it is not surprising that the resulting shapes are very similar.4 Unlike the solar analemma, the 
‘figure 8’ of injection positions is biased slightly below the ecliptic plane; the latitude of the Kourou 
launch site is 5.24° north of the equator, the inclination of FP2 is 5.59°, and the resulting injection 
latitude after 25 minutes of powered flight is 1.83° south of the equator. 

Each epoch in the launch window has a similar, though not identical, shape. Figure 3(b) shows 
the variation for all epochs in the daily launch window over one full year. The opening of the launch 
window at 11:30 UTC is on the left side, and five minute intervals separate each curve until reach-
ing 14:00 UTC on the right. Some geometrical properties of the resulting science orbit are readily 
explained from this pattern while other patterns are less intuitive, as will be seen in the following 
sections. 

Transfer and Orbit Constraints 

The injection state provided by Arianespace does not contain enough energy to deliver JWST 
to its operational LPO. This energy deficit is intentional to accommodate the possibility of over-
performance by the launch vehicle. Due to JWST hardware constraints, it is impossible to remove 
energy from the transfer orbit, so if the launch vehicle were to deliver JWST at an energy level 
beyond its operational orbit, the observatory would fly beyond the libration point region and may 
not be recoverable. As such, a mid-course correction maneuver is required to add the necessary 
energy missing from the launch vehicle delivery to achieve an operational orbit. The mid-course 
correction is divided into three segments. Figure 4 shows the locations of the MCCs on a sample 
trajectory; MCC-1a is 12 hours after separation, MCC-1b is 2.5 days after launch, and finally MCC-
2 is 30 days after launch. The cumulative ΔV budget for the three MCCs is set at 66.5 m/s.2 

Several factors impose additional limitations that need to be considered during the mission de-
sign phase. The direction of thrust for the first two mid-course correction maneuvers is greatly 
restricted due to Sun exposure limitations. The sunshield is not yet deployed at this stage in the 
mission and therefore the instruments are only protected from the Sun in a narrow range of attitudes. 
As such, the angle between the direction of thrust and the JWST to Sun line must remain between 
5 and 30 degrees. Fortunately, this direction restriction does not impose any severe constraints to 
the mission design process. The maneuver direction for the first two mid-course correction maneu-
vers is applied along the velocity vector, which is typically within the 5 to 30 degree restriction 
cone.2 

 

Figure 4. Sample trajectory showing location of mid-course correction maneuvers. 
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Also, JWST is never allowed to pass through the shadow of either the Earth or the Moon. En-
suring that the spacecraft is always in full Sun allows the thermal profile to remain consistent, and 
eliminates the need for any special power management if the solar array is not generating power. 

Launch Window Overview 

The launch window is defined by continuous time intervals between 11:30 and 14:00 UTC each 
day for which all the previous orbital constraints are met, and includes margin for model uncertainty 
(e.g. propulsion system performance). The previous launch window analysis demonstrated that 
over half of the launch readiness period (October thru December 2018) provides viable launch 
opportunities that satisfy all orbit requirements.1 However, the geometry of the orbits varies signif-
icantly.  

 

Figure 5. RLP YZ projection of JWST libration point orbits for October 2018. 

Figure 5 shows the RLP YZ projection of all the orbits that are achieved during October 2018 
with no constraint filtering applied; that is, all launch epochs that were able to enter orbit are dis-
played, even if they violate mission orbit requirements. Several patterns are evident. First, there are 
hourly variations during a given day launch window. Lissajous orbits are common early in the 
launch window, slowly transforming to halo orbits around 13:00, and finally becoming quasi-halos 
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at the end of the daily window. The monthly effects from the Moon are also apparent from the 19th-
21st, where several opportunities at the beginning of the day are lost when gravitational perturba-
tions are too large to be corrected with the available propellant. Halo orbits also appear earlier in 
the day than usual immediately after the lunar blackout period. 

There are also variations on a yearly cadence, which are not apparent in the previous figure. In 
particular, the periods around the solstices, December 2018 and June 2019, do not present reason-
able launch periods due to the larger number of orbit requirement violations. Inspection of a few 
such orbits typically indicates much larger orbit amplitudes around the December solstice, fre-
quently exceeding the RLP Y and/or Z amplitude constraints. For the cases around the June solstice, 
the constraint violations mostly pertain to the required ΔV needed to achieve a science orbit. This 
is illustrated in Figure 6, which represents the transfer ΔV cost for all launch cases during the 
months of October and December 2018, and June 2019. 

The combined ΔV for all three MCC maneuvers required to reach the LPO varies from 0 to 50 
m/s. A period of several days exists each month when the required ΔV increases due to the third 
body influence of the Moon. December 2018 requires a lower ΔV to achieve its LPO, but the aver-
age orbit size violates JWST requirements too frequently; conversely June 2019 requires the most 
ΔV to achieve the LPO. October 2018 was selected as the start of the launch readiness period as it 
requires only a moderate ΔV while resulting in reasonable orbit geometries for many launch times. 
The following sections will explore the dynamics that drive these results. 

 

Figure 6. Total ΔV required for launch in (a) October 2018, (b) December 2018, and (c) June 2019. 
All cases use FP2 from Arianespace. 

(a) 

 

 

 

 

(b) 
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RELATIONSHIP BETWEEN LAUNCH EPOCH AND SCIENCE ORBIT GEOMETRY 

As discussed in the previous section, the science orbit geometry (and other orbital characteris-
tics) varies in a complex fashion on hourly, daily, monthly and yearly rhythms. The geometry of 
the science orbit depends on several factors, including the launch epoch, the location (phase) of the 
Moon and its gravitational influence on the transfer trajectory, as well as longer period effects due 
to the eccentricity of Earth’s orbit around the Sun. This section explores the relations between these 
factors by leveraging the geometry of the problem and the well-known results from the CR3BP. In 
particular, we show that these variations can be understood as deterministic motion of the insertion 
state on the stable manifold of the libration point region. To proceed, the next paragraphs further 
explores the effect of the Earth’s motion in the RLP frame while the remainder of the section fo-
cuses on the approximation of the transfers and science orbits using the CR3BP. 

From ECEF to RLP 

As was discussed in the previous section, the launch trajectory is fixed in the ECEF frame, but 
creates shifted ‘figure 8’ in the Earth-Sun synodic frame. The daily launch window time span leads 
to an almost linear drift in right ascension (RA) and declination (DEC) in the synodic frame due to 
the angle between the Earth’s equator and the ecliptic plane.* RA is the angle measured in the RLP 
XY plane relative to the X axis, and increases with positive rotation about the Z axis; DEC is the 
angle above or below the XY plane. Note in particular that the start of the launch window is close 
to noon UTC and thus corresponds to a near maximum declination for each day from June to De-
cember and a minimum for the other half of the year. As a consequence, while the obliquity of the 
ecliptic is fixed, the relative declination of the launch insertion varies between (+), where λ is 
the latitude of the insertion point in the ECEF frame (-1.83°), and  is the obliquity of the ecliptic 
(23.4°). The declination varies slowly each day, creating the amplitude of the ‘figure 8’ over a year. 
The width and actual ‘figure 8’ shape is due to the eccentricity of the Earth’s orbit around the Sun. 
Indeed, compared to the mean Sun, the synodic X axis will lead the direction of the mean Sun for 
half of the year (centered on the Winter solstice) and lag the mean Sun during the other half (since 
the angular frequency is smaller than the mean motion when the Earth is near aphelion). This qual-
itative picture can be more accurately captured in the sequence of rotations going from the ECEF 
to the synodic frame: 

Ԧௌ௬௡௢ௗ௜௖ݎ ൌ 	ܴଵሺߝሻ. ܴଷሺߠ௛௢௨௥ሻ.  ,Ԧா஼ாிݎ
where ߠ௛௢௨௥ ൌ ሺ2ߨ െ ݊ாሻ.  ெ் is the hour angle, nE is the mean motion of the Earth around theீݐ
Sun. The symbols R1 and R3 represent the elementary rotations about the first and third axis, re-
spectively. 

In addition to the above variations, the motion of the Earth-Moon barycenter also creates 
monthly fluctuations in the insertion states and resulting orbits. Indeed, the RLP frame used in the 
science orbit definition (and in which the libration point dynamics is measured) is defined relative 
to the Sun and Earth-Moon barycenter line. This is illustrated in Figure 7. This can be approximated 
by expressing the motion of the Earth around this barycenter as a nearly circular orbit with a major 
axis of about 9200 km and period equal to the Moon’s period (relative to the synodic frame) around 
the Earth. 

In particular the Earth motion can be approximated in terms of the Moon’s orbital elements 
relative to the Earth as 

                                                      
* Which is spanned by the X, Y-axis of the synodic frame and the fact that UTC is kept very closely to a mean Sun time; 
that is, a mean synodic frame. 
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ሻݐԦா௔௥௧௛ሺݎ ≅ 	ܴଷሺെΩெ௢௢௡ሻ. ܴଵሺെιெ௢௢௡ሻ. ܴଷሺߨ െ ωெ௢௢௡ሻ. 	,ሻݐԦଶ஻௉ሺݎ

where 

ሻݐԦଶ஻௉ሺݎ ൌ 	 ሾെܴா௔௥௧௛. cosሺܯெ௢௢௡ሻ , െܴா௔௥௧௛. ,ெ௢௢௡ሻܯሺ݊݅ݏ 0ሿ். 

MMoon is the mean motion with a period of a lunar month, and REarth is the radius of the Earth’s orbit 
around the Earth-Moon barycenter. As a result, the ECEF insertion position is expressed in the RLP 
frame as: 

Ԧோ௅௉ݎ ൌ 	ܴோ௅௉. ሼܴଵሺߝሻ. ܴଷሺߠ௛௢௨௥ሻ. Ԧா஼ாிݎ ൅	ݎԦா௔௥௧௛ሺݐሻሽ, 

where ܴோ௅௉ ൌ 	ܴଷሺ߭ െ ߭଴ሻ represents the rotation between the ecliptic and the RLP frame and is a 
function of the Earth-Moon barycenter true anomaly around the Sun, . 

These transformations, thus clearly show the three main frequencies entering in the motion of 
the fixed ECEF insertion state when viewed from the RLP frame: hourly (hour), monthly (MMoon) 
and yearly (). The daily variations are due to the combination of the monthly and yearly variations.  

 
(a) 

 
         (b)                                                                       (c) 

Figure 7. Insertion positions in the RLP frame. (a) Time history of the RLP RA and DEC, showing 
the yearly periodicity of DEC and monthly variation in RA. (b) RA, DEC view showing the variation 
in the baseline ‘figure 8’ for position. Points with the same color correspond to launch epoch occur-
ring on the same day. (c) RA, DEC view showing the variation in the baseline ‘figure 8’ for velocity. 
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Figure 8. Difference in DEC of velocity after MCC-1a between start and end of daily launch window. 

We can also deduce from this analysis that node regression of the Moon’s orbit will lead to a 
small difference in the monthly variations which can be observed in the extrema of the declination 
of the insertion state in the RLP over the 10 year span of the mission. Since we are concerned here 
with the main mechanism, this has not been investigated further. However, we should note that the 
velocity perturbations due to the Moon are more strongly marked when the Moon at launch is in 
the waxing gibbous to full phase. This is illustrated by plotting the RA and DEC of the post-MCC-
1a spacecraft velocity vector in RLP coordinates, shown in Figure 7(c). A few days per lunar month 
have diverging curves in this (RA, DEC) space, indicating the unusual MCC-1a correction maneu-
ver needed to place the spacecraft on a libration point orbit transfer when the Moon is in the way.  

To identify the days when the Moon has the largest influence, the difference in declination be-
tween the first and last launch opportunities was computed for each day. As previously mentioned 
the declination will vary sinusoidally between (+), so any point that deviates from this trend 
indicates that the lunar perturbation is present. Figure 8 shows six or seven days of every month 
are affected by the Moon. The average RA in RLP of the Moon at launch on the first day with 
significant lunar perturbations is -65°, and the average RA on the last perturbed day is 19°. 

Near Ballistic Transfers 

In order to further investigate the relation of the JWST transfers to stable manifolds of LPOs, 
we note first that the transfers are close to being ballistic post-MCC-1a. The launch vehicle provides 
the majority of the energy necessary to deliver the observatory to an operational orbit; however, it 
is not quite enough to inject onto a stable manifold and achieve a science orbit at L2. As stated 
earlier, the lack of necessary energy is intentional to prevent the launch vehicle from overshooting 
the L2 region and losing the spacecraft into a heliocentric orbit. As seen in Figure 9, even with the 
decrease in necessary energy the observatory is almost on a ballistic trajectory toward an opera-
tional orbit at L2. The post-MCC-1a state, when performed at 100%, demonstrates the ballistic 
nature of the overall mission design. 

In practice, MCC-1a will not provide 100% of the required energy for the same reason that the 
launch vehicle does not target a direct transfer to the libration point. The effects of a 5% bias down 
are evident in the green trajectory in Figure 9, which falls back to Earth just before the first station 
keeping maneuver would be performed. By performing the additional two MCC maneuvers, the 
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required energy is achieved, as seen through the blue trajectory. An interesting observation is that 
the trajectory based off a single MCC maneuver at 100% and the trajectory resulting from three 
MCC maneuvers (two biased down) are nearly identical. The only cost is the small ΔV penalty 
associated with delaying MCC-1b until 2.5 days. 

The Jacobi constant for each of these trajectories in the realistic model was also evaluated. Fig-
ure 10 shows the variation in this integral of motion over two different regions: the transfer from 
Earth to L2, and one full year in the LPO. As can be observed, the Jacobi ‘constant’ is quite variable 
in this case. 

The sharp variation at the beginning of the transfer in Figure 10(a) results from the difference 
in modeling the CR3BP dynamics near the Earth-Moon barycenter; in the full model the accelera-
tion is split between the Earth and Moon’s gravitational fields. However, once in the libration point 
region and far from the Earth and Moon, the value settles to a gentle variation with small amplitude. 
This oscillation has a one-year period and can be accounted for by the eccentricity of the Earth-
Moon barycenter’s orbit around the Sun. 

 

 

Figure 9. Transfer trajectories with various MCC maneuver magnitudes. 

To account for the varying Jacobi value, both from MCC-1a to the libration point while in the 
LPO, the average was computed over one full year in orbit starting 6 months after launch. These 
values were then used to generate orbits at the same energy level in the CR3BP. Unfortunately, 
there was a significant difference in the amplitudes of these orbits compared to the orbits in the full 
ephemeris model. While the Jacobi constant would seem to provide the easiest method of transi-
tioning between the simplified and full dynamical models, later sections will show that a match in 
velocity direction is sufficient to generate matching orbits, after a velocity correction is applied. 
With these results, the next step consists of matching these transfers with CR3BP orbits whose type 
and structure are more firmly characterized. 
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               (a)                                                                                  (b) 

Figure 10. Jacobi constant for various MCC magnitudes. (a) Transients observed in vicinity of Earth 
and Moon. (b) Variations are much smaller once around the libration point. 

Review of the CR3BP libration point dynamics 

The libration point region of interest consists of a set of periodic and quasi-periodic orbits that 
oscillate around the L2 point without encircling the Earth, Sun or Moon. The most relevant families 
of periodic orbits for this discussion are the planar and vertical Lyapunov families and halo orbits. 
Figure 11 presents an overview these families of periodic orbits. Note that for a given Jacobi con-
stant value, C, both northern and southern halo orbits exist and correspond to different direction of 
motion when observed from the Earth (clockwise vs. counter-clockwise, respectively). As was ob-
served in the previous section, both of these cases are possible JWST orbits. 

 
                      (a)                                                                                (b) 

Figure 11. Periodic orbit families in the CR3BP L2 region. (a) Selection of sample periodic orbits. (b) 
Synthetic representation in terms of apsis conditions. 
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While periodic orbits represent only a very small set of LPOs, they form the basis for the quasi-
periodic orbits. Quasi-periodic orbits notably exist around these families, and are typically classi-
fied as quasi-halo orbits or Lissajous orbits. These latter orbits can be of small amplitude and stay 
near the corresponding planar Lyapunov orbit at the same energy (quasi-Lyapunov orbits) or of 
large amplitude, quasi-vertical orbits. These orbits comprise the set of CR3BP orbits that represent 
JWST science orbits. Note in particular, that at the range of Jacobi constant of the JWST transfers, 
the periodic orbits in these libration point regions are quite large. Figure 12(a) shows the relative 
size of the halo orbits, the zero velocity curves and the Moon’s orbit, while Figure 12(b) indicates 
the size of the set of orbits that escape the Earth-Moon Hill’s region (red and blue points). 

 

                                   (a)                                                                                 (b) 

Figure 12. Relative size of orbits and escape set at the Jacobi constant of interest. (a) zero velocity 
curves and corresponding halo projections;(b) periapsis point colored by transit behavior: red for 

escaping orbits through L2, blue for escape through L1 and green for orbits that fall back toward the 
Earth-Moon system for at least one revolution. 

At the energies considered, most of these orbits are unstable and present a set of (ballistic) as-
ymptotic orbits that either converge to the given orbit in forward or backward time (stable and 
unstable manifolds, respectively). Figure 13 presents sample trajectories in the stable manifold of 
a halo orbit. Other LPOs have corresponding stable manifolds, including quasi-periodic orbits. The 
stable manifold trajectories provide direct transfer from the Earth vicinity to the libration point 
region, and are thus the CR3BP orbits corresponding to the JWST transfers. The manifold structure 
can thus be used to better understand the variation in the observed JWST science orbits. 

As can be observed from Figure 13, the stable manifold to a halo orbit forms a tube structure in 
three dimensions. Trajectories along the manifold are computed by first selecting a sequence of 
states on the periodic orbit over a base period, then performing an eigenvalue analysis of the cor-
responding monodromy matrix to generate initial states perturbed along the computed eigenvec-
tors.5,6 Thus, the manifold can be parameterized by an angle that represents the selection of initial 
state in this algorithm (namely, ߠ ൌ  ሻ, where t represents the time used in the computationܶ/ݐሺߨ2
and T the period of the orbit) and the time along the manifold orbit from the computed initial point. 
The intersection of the manifold with a Poincaré section reveals a closed loop of possible trajecto-
ries, as we will be doing in the following.  
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     (a)                                                                        (b) 

Figure 13. Stable manifold of a sample periodic orbit. 

In general quasi-periodic orbits require two angles (plus the time along each orbit) to be param-
eterized and will thus appear as tori shapes on Poincaré sections. More interestingly, the manifolds 
of the various LPOs are organized as a boundary of transit orbits and can be shown to be equivalent 
to a 4-dimensional sphere for a fixed Jacobi constant value.7 In particular, given a point on a man-
ifold, the set of velocities leading to other manifold orbits (with the same energy) is a circle. Alter-
natively, for a given velocity direction, the set of position leading to manifold transfers is a closed 
curve, and present thus a maximum out-of-plane component. For example, in the case of a halo 
orbit, the intersection of the manifold with the RLP (X,Y)-plane does not occur at a zero inclination 
(relative to the RLP frame) and an injection state having a small inclination cannot thus reach a 
halo orbit from that location. This is in contrast to the planar Lyapunov orbits, which do not present 
any out-of-plane component in any intersection. These effects will be captured in greater detail in 
the next section. 

Matching JWST Transfer Orbits 

In order to relate the above manifold orbit organization to the JWST orbit variation, we must 
thus match the transfers to corresponding manifold orbits. As was seen in the previous section, the 
JWST transfers are fairly close to ballistic and such a match should thus be possible. The following 
paragraphs discuss the approach used to perform such an operation. 

Choice of matching conditions. The first step in matching orbits between two different models 
is to agree on the interface. Given the near ballistic nature of the transfer post-MCC-1a or post-
MCC-1b, these post-maneuver states are thus considered (rather than the insertion states analyzed 
previously) as matching conditions. As was noted previously, the MCC-1a and MCC-1b maneuvers 
are only applied in the direction of the observatory velocity and thus only change the value of the 
Jacobi constant in CR3BP approximation. In particular, the post-MCC-1a position is very close to 
the ballistic position obtained from the insertion states and the RA, DEC variations of both post-
MCC-1 states follow a similar ‘figure 8’ variation as was discussed in the previous section.  

In order to match invariant manifold of LPOs to these post-MCC-1a states, one can look at 
comparing the manifold intersection with the selected post-MCC-1a sphere (chosen as having 70 
Earth radii). In particular, since the position magnitude is fixed, matching in position can be meas-
ured as distance in RA and DEC differences on that sphere. Figure 14, for example, shows the 
intersection of a manifold associated with a halo orbit with all of the possible (RLP transformed) 



 15

JWST transfer state when they intersect a sphere of 70 Earth radii (referred to as injection states). 
The black stars seen on this plot represent the RLP transformed injection states (‘figures 8’), while 
the color stars represent intersections of the manifold. From this representation it is clear there is a 
large position and velocity continuity overlap between the manifold and the post-MCC-1a states; 
however, it is not clear if the position and velocity continuity occurs for the same transfer condi-
tions. In other words, a single injection state needs to match the same position and velocity manifold 
intersection in order to take advantage of the direct transfer. 

 

 
     (a)                                                                                   (b) 

Figure 14. Intersecting injection states with the manifold of a halo orbit at 70 Re in (a) 
Position, and (b) Velocity. 

With these interface choices, we are thus led to a set of matching condition between the injection 
states and the manifold intersection states: 

ቊ
൯݊݋݅ݐԦ݆݅݊݁ܿݎ൫ܣܴ ൌ ;൯݈݀݋Ԧ݂݉ܽ݊݅ݎ൫ܣܴ	 ൯݊݋݅ݐԦ݆݅݊݁ܿݎ൫ܥܧܦ	 ൌ ൯݈݀݋Ԧ݂݉ܽ݊݅ݎ൫ܥܧܦ	

൯݊݋݅ݐԦ݆݅݊݁ܿݒ൫ܣܴ ൌ ;൯݈݀݋Ԧ݂݉ܽ݊݅ݒ൫ܣܴ	 ൯݊݋݅ݐԦ݆݅݊݁ܿݒ൫ܥܧܦ	 ൌ ൯݈݀݋Ԧ݂݉ܽ݊݅ݒ൫ܥܧܦ	
 

These equations represent a system of four equations in four unknowns (three manifold param-
eter and the Jacobi constant) and a finite set of solutions can be expected for each injection condi-
tion. While it theoretically possible to obtain several manifold orbits with the given position and 
velocity direction (thus differing in magnitude only), the local search in C near the average Jacobi 
constant observed for the particular injection condition leads to a single solution.  

Note that in as much as the set of injection states is parameterized by the launch epoch, the 
CR3BP solutions can be tied to a particular launch epoch. Alternatively, one could use the simpli-
fied model used to describe the ‘figure 8’ states and use the hour angle, Moon’s mean anomaly and 
Earth mean anomaly to approximate this set of injection states to recover the relative geometry of 
the Sun-Earth-Moon system that leads to a particular science orbits. 

Matching periodic orbits. For periodic orbits, the stable manifold intersections are parameter-
ized by only two parameters, θ and C. Thus, no exact solution to the above equations is to be 
expected in general. However, one can look at the closest manifold transfer from a given state to 
provide some insight into the observed orbit type variations. Therefore, the above equations are 
cast as a minimum distance problem, where the distance if defined in the 4-dimension Euclidean 
distance between the vectors: 
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The numerical approximation to the cost function is shown in Figure 15(b) where the colors 
match the manifold orbits shown in Figure 15(a). As can be observed, a few points exist where the 
position and velocity continuity between the post MCC-1a injection state and the manifold is very 
nearly satisfied. Ideally the post MCC-1a state at the computed epoch, should fall into a near halo 
orbit with the characteristics of the reference orbit from the CR3BP when propagated forward in 
time. 

 
       (a)                                                                               (b) 

Figure 15. Matching position and velocity with a stable manifold of a halo orbit.  (a) RLP (Y,Z)-pro-
jection of halo orbit and manifold used showing coloring scheme used. (b) Distance in 4D (RA, DEC) 

space showing minimum distance around θ = 50°.  

To test this theory, the injection state with the best position and velocity matching is propagated 
forward in time, along with a station keeping algorithm, in a full ephemeris model to determine the 
characteristics of the resulting operational orbit. Figure 16(a) visualizes the resulting orbits. The 
red orbit was generated in the CR3BP model while the blue orbit is the ephemeris created in a full 
force model (The lunar orbit is shown in black for scale). Visually, the two orbits are nearly iden-
tical. To further confirm the matching, Figure 16(b) shows the X, Y, and Z amplitudes throughout 
the span of the ephemeris. The dotted lines correspond to the maximum Y and Z amplitudes from 
the CR3BP model. As can be observed, the two orbits are nearly identical. The Y and Z amplitudes 
match closely. 

The above process can be repeated for a range of Jacobi constants and families of periodic orbits. 
In particular, Figure 17(a) shows the minimum 4D distance from any post-MCC-1a position for 
northern halo (blue), southern halo (red), and Lyapunov (green) orbit families, where increasing 
family member number correlates to increasing amplitude of the associated LPO. In Figure 17(b), 
these positions of these family members with a 4D separation less than 1 degree are overlaid on the 
positions of all post-MCC-1a states. Note that only northern and southern halo orbits meet this 
criterion; Lyapunov orbits match the insertion positions closely but have a large difference in ve-
locity, and the opposite is true for vertical orbits. The halo orbit family members with the smallest 
separation from insertion states have a Jacobi constant between 3.00075 and 3.00080. The closest 
matches for the halo orbits with real insertion states tend to occur in the middle of the daily launch 
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window, with southern bias occurring at negative declination, and northern bias at positive decli-
nations. Referring back to Figure 7(a) the seasonal relationship becomes apparent, as these decli-
nations are predominant in the winter and summer, respectively. 

  
     (a)                                                                               (b) 

Figure 16. Overlay of matched CR3BP with the full force model JWST transfer. (a) 3D view in the 
RLP frame; (b) comparison of the component amplitudes. 

 
     (a)                                                                                 (b) 

Figure 17. Injection state differences between CR3BP and ephemeris model. (a) Minimum 4D differ-
ence in (RA, DEC) space for members of halo, vertical, and Lyapunov families. (b) Northern and 

southern halo orbit states with 4D distance less than 1 degree compared to post-MCC-1a positions. 

This shows that there is a strong relationship between the declination post-MCC-1a and the bias 
of the science orbit. This is further confirmed by examining not just the nearest matches in 4D (RA, 
DEC) space, but looking at the patterns established when observing the declination space in both 
position and velocity, as shown in Figure 18.  The blue and red sections in the figure correspond to 
the northern and southern halos, respectively. The purple region maps the vertical family. The 
origin corresponds to the planar Lyapunov family. Only a very narrow set of conditions exists in 
declination space that would result in a periodic halo orbit. This small declination intersection sub-
set explains the existence of numerous quasi-halo and Lissajous orbits, as observed earlier in Fig-
ure 5. 
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   (a)                                                                         (b) 

Figure 18. Injection state differences between CR3BP and ephemeris model at post-MCC-1a epoch. 
(a) (RA, DEC) space position. (b) (Pos. DEC, Vel. DEC) space. 

Throughout this investigation, much effort has been placed into matching halo and quasi-halo 
orbits. Very little attention has been given to Lissajous orbits as using the manifold intersection 
technique for non-periodic orbits is difficult. Because Lissajous orbits are an extension of the planar 
Lyapunov family, reasoning suggestions that the Lissajous family would exist in (RA, DEC) space 
near the existence of the Lyapunov family. In position and velocity declination space shown in 
Figure 18(b), the Lyapunov family is located at the origin. To test the idea that the Lissajous family 
would exist near the Lyapunov family, the post MCC-1a state closest to the origin was selected and 
propagated in a full ephemeris model. The resulting orbit, shown in Figure 19, appears to be a 
Lissajous orbit. 

 
     (a)                                         (b)                                         (c) 

Figure 19. Lissajous trajectory resulting from closest intersection with Lyapunov state in (Pos. DEC, 
Vel. DEC) space. 

Matching general transfers. In the general case, the matching condition can be solved by di-
chotomy on the velocity magnitude, in a similar process as the computation of MCC-1a and the 
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algorithms explored by Villac and Scheeres.7 In particular, given RA and DEC for position and 
velocity, the change in velocity magnitude will lead to a change in transit orbit type: from non-
transit at small velocity magnitude values to transit orbits at higher speed. Refining the velocity 
magnitude at which the orbit type change occurs leads to a trajectory on the stable manifold to a 
libration point orbit. This process has been carried out for the set of injection conditions and Figure 
20(a) shows the discrepancy in Jacobi constant between the average observed on ephemerides for 
JWST orbits and the differentially corrected orbit in the CR3BP. 

 
     (a)                                                                        (b) 

Figure 20. Differential correction results. (a) Jacobi constant differences between JWST average 
value and CR3BP corrected state. The dashed blue and red lines indicate the Winter and Summer 

solstices respectively. (b) Plot of matching orbits for the largest difference case. 

As was noted before, there is a discrepancy in the appropriate definition of the Jacobi constant 
in the ephemeris model. However, the largest differences indicate some general trend: the trajecto-
ries appear to be further away from a ballistic transfer around the winter and summer solstices (days 
75 and 255 in Figure 20(a), corresponding to Dec. 16, 2018, and Jun. 14, 2019, respectively) where 
large sizes of orbits are also observed. Conversely, the spring and autumn present smaller correc-
tions that also led to close match to periodic orbits as was observed in the previous paragraph. 

Note that even in the case of the largest discrepancies in Jacobi constant, the orbits do match 
the JWST orbits very closely, as shown in Figure 20(b). Thus, even though the Jacobi constant only 
partially represent the JWST orbits, the differential correction process converges for each orbit, 
validating and enlarging the explanation put forth earlier: the variation in the observed JWST sci-
ence orbit is due to the varying insertion condition in the RLP frame. The motion of this insertion 
condition is due to having a fixed insertion condition in the ECEF frame and launch opportunities 
is more likely to satisfy the mission constrain when the insertion state is closer to the manifold of 
a libration point orbit. 

CONCLUSION 

The analysis in this paper has shown the CR3BP model is a useful tool to extract many of the 
relationships between the launch epoch and the science orbit geometry for JWST. The fixed inser-
tion position in ECEF leads to hourly variations as the Earth rotates, monthly variations as the Earth 
and Moon orbit their barycenter, and yearly variations as the Earth orbits the Sun. Creation of 
periodic orbits in the simplified model provides insight into the types of orbits that are achieved. 
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The predominance of quasi-periodic trajectories occurs as most JWST insertion states do not inter-
sect exactly with invariant manifolds of periodic orbits created in the CR3BP. 

In terms of mission design, future spacecraft operated at L2, or even L1, can apply the lessons 
learned from this analysis of possible JWST orbits. Many libration point orbiters target a fixed 
reference orbit by having the launch vehicle target a fixed state in the RLP frame. This shifts the 
complexity of the trajectory design from the spacecraft to the launch vehicle, however for missions 
with relatively few constraints on the type of libration point orbit, a launch vehicle state fixed in 
ECEF may be a simpler solution. For spacecraft with a larger ΔV budget and/or fewer attitude 
constraints, it may be possible to target orbits with a smaller range of variations by designing the 
correction maneuvers appropriately. 
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