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 Mission Objective
— Heliophysics, Space-Based Magnetic Reconnection
* Observatory Design

— Four Independent Spin-Stabilized Observatories In
Tetrahedral Formation and Highly Elliptical Orbit

* Instrument Design
— Instrument Suite Composed of 8 Deployable Booms
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« Spin-Axis (Pointing)

Control:

— Thermally constrained

2x2 deg science box

« Spin-Rate (Spin)
Control:

— Nominal rate of 3 rev/min
(RPM) to maintain SDP

wire-boom tension

e Transverse-Rate

(Nutation) Damping:
— Minimize SDP motion and
ensure spin-polarity for

-]

attitude sensors

Angular Momentum
Control Requirements

MMS Spin Axis
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Angular Momentum Control
Design Challenges

 Angular momentum control
maneuvers required to keep
spin-axis in science box

 Traditional approach uses
de-coupled modes for
pointing, spin, nutation

« Impractical for MMS

— Frequency and Number of
maneuvers (Orbit Control,
Pointing, Nutation, Spin, four
observatories, every 2-4 weeks)

— Difficult to implement de-
coupled open-loop control with
flexible wire booms

« Desire a unified angular
momentum controller

— Comprehensively control
pointing, spin, and nutation
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Angular Momentum Control
Design Process

« The MMS Angular Momentum Controller

designed based on a controller developed by
Reynolds and Creamer for the Reuven
Ramaty High Energy Solar Spectroscopic
mager (RHESSI) mission.

 Reynolds-Creamer used the Lyapunov direct
method for its formulation.

« MMS controller augments the Reynolds-
Creamer baseline to include path-weighting.
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State
vector

X — X (t)

Lyapunov Direct Method

For a non-linear dynamical
system X = f (x)

If a Lyapunov Function V (x)
exists, the system is stable about
an equilibrium point

Lyapunov Function if continuous
and there is a neighborhood
about the equilibrium point where
for any X

V (x) > 0 about the origin
V (x) Partial derivative continuous

V(x)<0
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angular
rate

Inertia
matrix

applied
control
torque

skew
symmetric

Lyapunov Direct Method.:
Example

* Forrigid-body spacecraft, dynamics
represented by Euler’s equations:

% s w=T" (T—[w]xlw)

« Lyapunov Function based on
Rotational Kinetic Energy:

VGHB

1
= §wTIw —>

« Lyapunov Derivative:

VGZE

1
—§w7'—>
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General Lyapunov ==
Control Design Methodology &&=

1. Define a Lyapunov function in terms of the
system states.

2. Differentiate the Lyapunov function

3. Substitute the system dynamics into the
Lyapunov derivative.

4. Design a control law to ensure that the
Lyapunov derivative is negative semi-definite.
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Reynolds-Creamer Methodology

 Reynolds-Creamer Lyapunov Function:

1 - 1
— T —1
“pointing error” “spin error”
h — Iw current angular h ;= IgCU() _A é target angular
momentum p bei _ momentum
A inertial to body wo targetspin-rate
b<—1 transformation éz target spin-axis
[3 Principle
major-axis inertia
. T align applied control torque In
Vrc = | w — wy A éz T 3 opp(_)site direction of rate error:
b<—i unified controller
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Properties of Reynolds-Creamer
Controller

 Reynolds-Creamer is Path Unconstrained:
— For spinning spacecratft, nutation is induced to move spin-axis.
— Spin-axis movement is unconstrained.
— Unconstrained movement can cause high induced nutation.
— Angular rates can be driven through zero.

« Undesirable for MMS:
— SDP Wire Boom Motion
— Spin-Polarity for Attitude Sensors
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Path-Weighted Methodology

« Path-Weighted Lyapunov Function:

[ 1 — kgp; 1
__ 'vspin T spn T T —1
“pointing error” “nutation error” “spin error”
kspin
5hA =h - hA - Range: [0,1]
~ « Weighting parameter dictating the level of
hb = WoPs3 induced nutation introduced during angular
~ _ o momentum control.
Ps3 MQJOF p_rlnC|pal « “Encourages” the current spin-axis to
axis unit vector remain in the region of the principal spin-

axis during control.
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Path-Weighted Methodology

pr — I3 W — Wy kspz’n Aéz + (1 — kspin) f)3 T

b<—1

align applied control torque in
— opposite direction of rate
error: unified controller
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MMS Implementation:
Controller Error

Command Target
Angular Velocity

éi Spin-Target Axis
wo Spin-Target Magnitude

Calculate
Controller Error

5wpw — W — Wy kspi’n Aéz + (1 — ]‘Cspin) IA)S

b<—1
W On-Board Estimate of Angular Rate
P3 Ground Estimate of Principal Axis
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MMS Implementation:
Controller Actuation

Top View ‘Bottom View
MMS Actuators are (Instrument Deck) (Spacecraft Deck)

Hydrazine Thrusters SRONPU  6RSPPU JRSPPL  4RDNPL

eight 4-Ibf radial
four 1-Ibf axial

v

14 pure moment pairs

¢ TRSNNU SROPNU 1ROPNL JRSNNL
If k ranges from 1-14 e I ——
. . TRSNNU 6RSPPU

Determine which T f. ® E.! SROPNU ‘_ﬂ ! SRONPU
IS most negatively < ks

. . (o) 1RDPNL ® ARONPL
aligned with 5wpw IRSNNL z 2RSPPL x

SADPNL 10ADNPL
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Kspin Properties:
Pointing Control
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For higher gains,
pointing is

pointing-error angle
[deg]

Kspin Properties:
Spin Control
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Kspin Properties:
Flexible Body Dynamics
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General characteristics for kspin
design flexible dynamics
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pointing error [deg]

nutation angle [deg]

Flight Results

Gain optimized for
time during
commissioning

Dynamic response
very close!
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Flight Statistics

Maneuver (DOY) Observatory 1D Maneuver Magnitude of Final Pointing
Duration (min) Slew (deg) Error Estimate
(deg)
GS-095 1 40 2.49 0.24
(167, 168)
2 40 2.66 0.29
3 20 0.87 0.25
4 40 2.39 0.15
DH-116 1 40 2.18 0.06
FI-116 2 20 1.43 0.06
(188)
3 20 1.07 0.16
4 20 1.18 0.11
FI-119 1 - - -
1
(190) 2 20 1.31 0.05
3 20 1.21 0.15
4 20 1.21 0.14
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Summary

« The MMS Angular Momentum controller is a
unified controller.

— Can successfully control pointing, spin, and nutation for
spin-stabilized observatories with flexible deployables.

« Simple to use
— One control gain (kspin).
— Commandable pointing axis and spin-rate.

— Only requires knowledge of current angular rate and
current major principal axis.

 Can be used as a baseline for Angular
Momentum control of future spin-stabilized
missions.
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Questions?
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