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Abstract: We examine use of proton SEE data to constrain heavy-ion SEE susceptibility. We discuss limitations due to short range proton recoils and develop an approach for using proton data to constrain on device sensitive volumes.

Conclusions

We have examined the effect on device SV geometry on the
conclusions that can be drawn from proton SEE data for heavy-ion SEE

Results and Discussion

Figs. 6-7 illustrate the dependence of LET, on proton fluence and the size of the
sensitive volume. Regardless of the SV size, LET, increases rapidly from 20-50
MeV, but flattens out from 100-500 MeV.

Destructive SEE Mechanisms

Destructive SEE (DSEE) modes are among the most serious threats
facing many missions. They are also difficult to bound with proton data,
since DSEE susceptibility depends on more than ion LET. See Figs. 3-4.

Introduction, Data and Method

Although heavy-ion single-event effects (SEE) pose serious threats to
semiconductor devices in space, many missions face difficulties testing such
devices at heavy-ion accelerators. Low-cost missions often find such testing

Hardness Assurance Implications

The discussion of DSEE mechanisms and the Monte Carlo results paint a
pessimistic picture for use of proton data to bound heavy-ion DSEE rates. The
Z, angular and range dependence of SEGR and SEB suggest proton testing will

too costly. Even well funded missions face issues testing commercial off the

significantly underestimate SEB/SEGR risk if it detects the susceptibility at all.
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However, describing space heavy ions in terms of LET oversimplifies the
situation. For small (<<1 um3) SV, LET describes average energy loss,
while SEE may result from rare events (energetic delta rays) that represent
fluctuations away from the average indicated by LET.[12] Extreme events
for high-energy ions deposit far more energy in a small SV than events of

angle of incidence and atomic number Z. The angular and Z dependencies (likely the result of
momentary gate oxide weakening by the ion), limit the number of proton recoils that can cause
SEGR. Similar effects occur in FLASH memory[16] and some bipolar technologies.[17]. b) Like
SEL, SEB is a parasitic bipolar effect. While ion range is usually less critical than for SEL and
SEGR, [9] shows SEB voltage decreasing for short range ions (<30 um). This work also
suggests SEB vulnerability may increase with Z. These factors, along with the angular

N
(6]
i

[y
(6]

Maximum Equivalent LET (MeVcm?2/mg)
N
o

the SV can double the maximum LET,,
but only for large fluences of high-energy
protons. For high-Z materials, most of the
recoil energy comes from the fission of the
original struck high-Z nucleus. As such, it
depends on the nuclear decay physics to a

of these differences can bee seen in Fig. 8, where LET, saturates at lower
energy for shallow SV than for deeper SV. Thus, use of multiple proton energies
could differentiate between candidate SV and better constrain SEE rates.

We assume that the cross section follows a Welibull and use a Generalized
Linear Model to constrain the Weibull parameters and determine the heavy-ion
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largest SV was a 10 um cube. This is a fairly shallow charge collection
depth z for DSEE. However, it demonstrates the problems arising from
using proton recoils as a proxy for heavy-ion test data, and for any deeper
SV, protons recoils would only deviate further accelerator or galactic cosmic

(figure 3 from [6]) with ion species production (figure 7 from [6]). The results in Fig.
9 suggest few proton recoils have energy higher than the Bragg peak. The chances
of one of these traversing a long chord length in a deep SV are small.
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