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Abstract:

The distribution of transit times from the Northern Hemisphere (NH) midlatitude surface is a
fundamental property of tropospheric transport. Here we present an analysis of the transit time
distribution (TTD) since air last contacted the northern midlatitude surface layer, as simulated by
the NASA Global Modeling Initiative Chemistry Transport Model. We find that throughout the
troposphere the TTD is characterized by long flat tails that reflect the recirculation of old air
from the Southern Hemisphere and results in mean ages that are significantly larger than the
modal age. Key aspects of the TTD -- its mode, mean and spectral width -- are interpreted in
terms of tropospheric dynamics, including seasonal shifts in the location and strength of tropical
convection and variations in quasi-isentropic transport out of the northern midlatitude surface
layer. Our results indicate that current diagnostics of tropospheric transport are insufficient for
comparing model transport and that the full distribution of transit times is a more appropriate
constraint.
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Introduction The Transit-Time Distribution Constraining the TTD from Observations
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Transport paths, binned according to when air last contacted the NH .
midlatitude surface, are inferred from: Conclusions

- 7(G) =0 subject to G(roym, v, t) = 0(t —t')

where 7 = advective-diffusive transport operator

@® The mean age reflects the average of a highly skewed TTD. Thus, the full
distribution of transit times provides a more physically meaningful
description of the transport.
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