Lessons Learned in Thermal Coatings from the DSCOVR Mission

Nithin S. Abraham

NASA Goddard Space Flight Center, Greenbelt, Maryland 20771
Code 546 Contamination and Coatings Engineering Branch
Overview

■ Abstract

■ Background
 ■ Overview of DSCOVR Mission
 ■ Overview of Thermal Coatings

■ Lessons Learned
 ■ Lesson 1
 ■ Lesson 2
 ■ Lesson 3
 ■ Examples

■ Example 1. Analysis of Lessons Learned on DSCOVR’s White Silicate Coatings
 ■ Coating and Hardware
 ■ Problems, Solutions, and Future Work

■ Example 2. Analysis of Lessons Learned on DSCOVR’s Reflective Thin Films
 ■ Coating and Hardware
 ■ Problems, Solutions, and Future Work

■ Conclusions
 ■ Summary of Lessons Learned
 ■ Acknowledgements
 ■ References
Abstract

Finding solutions to thermal coating issues on the Deep Space Climate Observatory (DSCOVR) mission was a very challenging and unique endeavor. As a passive thermal control system, coatings provide the desired thermal, optical, and electrical charging properties, while surviving a harsh space environment. DSCOVR mission hardware was repurposed from the late 1990s satellite known as Triana. As a satellite that was shelved for over a decade, the coating surfaces consequently degraded with age, and became fairly outdated. Although the mission successfully launched in February 2015, there were unfamiliar observations and unanticipated issues with the coating surfaces during the revival phases of the project. For example, the thermal coatings on DSCOVR experienced particulate contamination and resistivity requirement problems, among other issues. While finding solutions to these issues, valuable lessons were learned in thermal coatings that may provide great insight to future spaceflight missions in similar situations.
Background

- Overview of DSCOVR Mission
- Overview of DSCOVR Thermal Coatings
Background

Deep Space Climate Observatory (DSCOVR) Mission

- Earth observation and space weather satellite
 - Orbits between Earth and the sun at the Lagrange point 1 (L1)
 - Successfully launched on February 11, 2015
 - SpaceX Falcon 9 launch vehicle from Cape Canaveral, Florida

Planned mission lifetime is 5 years to provide:

- More advanced and reliable warnings of solar wind conditions
 - Harmful solar activity can potentially impact power grids, communications systems, and satellites close to Earth

- Measurements of the radiation reflected and emitted by Earth
- Images of the sunlit side of Earth for science applications

Key partners consist of:

- National Oceanic and Atmospheric Administration (NOAA)
- NASA Goddard Space Flight Center (GSFC) [Spacecraft]
- U.S. Air Force (USAF) [Launch Vehicle]

Photo Credit: NOAA (http://www.nesdis.noaa.gov/DSCOVR/mission.html)
DSCOVR’s mission hardware was repurposed from the late 1990s satellite known as Triana, which was a previously canceled NASA earth science mission.

- **2001**
 - The Triana satellite was canceled in November and afterwards put into storage at NASA GSFC.

- **2008**
 - NOAA and USAF removed the Triana satellite from storage and tested it as a solution to meet their space weather requirements.

- **2012**
 - The refurbishment of the Traina satellite began as part of the DSCOVR mission’s pre-launch activities.

- **2015**
 - DSCOVR successfully launched in February and reached its final orbit in June.
Background

- Thermal Coatings
 - Serves as a passive thermal control system on the spacecraft
 - Provides **thermal**, **optical**, and/or **electrical charging** properties to meet mission requirements while surviving the harsh space environment

- **Thermal Coatings**
 - BLANKET FILMS
 - Germanium Black Kapton (GBK)
 - REFLECTIVE THIN FILMS
 - Conductive GSFC Silver Composite Coating
 - WHITE SILICATE COATINGS
 - GSFC NS43C Alion Z-93C55
 - INTERNAL BAFFLE COATINGS

Background

- Although DSCOVR launched successfully, there were many **unfamiliar observations** and **unanticipated issues** with the thermal coating surfaces during the revival phases of the mission.

EXPLANATION

- Although the root cause is **still unclear**, the many anomalies that were observed on DSCOVR may be correlated to the age and storage of the coatings. As a satellite that was shelved in storage for over a decade, the coating surfaces consequently **degraded with age** and **continued handling**, as well as became **fairly outdated**.

- Finding solutions to DSCOVR’s thermal coating issues was a very **challenging** and **unique** endeavor.

CHALLENGES

- The fragile condition of the existing coatings created challenges that involved **particulate contamination** and **electrostatic discharge/resistivity**.

- Valuable lessons were learned in thermal coatings that may provide insight to future spaceflight missions in similar situations.
Lessons Learned

- Coatings Lesson 1
- Coatings Lesson 2
- Coatings Lesson 3
- Examples
Lessons Learned

The following are the lessons learned in thermal coatings from the DSCOVR mission:

■ LESSON 1.
It is recommended to replace thermal coatings that have significantly aged and/or have been placed in dry purged storage conditions for an extended period. Aged coatings that show physical signs of damage and “wear and tear” are more fragile, likely to damage even further with continued handling, and have an increased risk of generating particulate contamination.

■ LESSON 2.
It is recommended to verify the electrical resistivity of thermal coatings that have significantly aged and/or have been placed in dry purged storage conditions for an extended period. Aged coatings may have been damaged and may not exhibit the required conductivity. Aged coatings may also have outdated properties, and could have other replacement options available to meet mission requirements.

■ LESSON 3.
It is recommended to treat most thermal coatings as “no touch surfaces” whether they have aged over time in storage or have been freshly applied during refurbishment. Although this is challenging, avoiding surface contact with the coating will reduce any risk of potential damage and contamination on a particulate or molecular level.
Lessons Learned

The following are the lessons learned in thermal coatings from the DSCOVR mission:

■ LESSON 1.
It is recommended to replace thermal coatings that have significantly aged and/or have been placed in dry purged storage conditions for an extended period. Aged coatings that show physical signs of damage and “wear and tear” are more fragile, likely to damage even further with continued handling, and have an increased risk of generating particulate contamination.

■ LESSON 2.
It is recommended to verify the electrical resistivity of thermal coatings that have significantly aged and/or have been placed in dry purged storage conditions for an extended period. Aged coatings may have been damaged and may not exhibit the required conductivity. Aged coatings may also have outdated properties, and could have other replacement options available to meet mission requirements.

■ LESSON 3.
It is recommended to treat most thermal coatings as “no touch surfaces” whether they have aged over time in storage or have been freshly applied during refurbishment. Although this is challenging, avoiding surface contact with the coating will reduce any risk of potential damage and contamination on a particulate or molecular level.
Lessons Learned

The following are the lessons learned in thermal coatings from the DSCOVR mission:

■ LESSON 1.

It is recommended to replace thermal coatings that have significantly aged and/or have been placed in dry purged storage conditions for an extended period. Aged coatings that show physical signs of damage and “wear and tear” are more fragile, likely to damage even further with continued handling, and have an increased risk of generating particulate contamination.

■ LESSON 2.

It is recommended to verify the electrical resistivity of thermal coatings that have significantly aged and/or have been placed in dry purged storage conditions for an extended period. Aged coatings may have been damaged and may not exhibit the required conductivity. Aged coatings may also have outdated properties, and could have other replacement options available to meet mission requirements.

■ LESSON 3.

It is recommended to treat most thermal coatings as “no touch surfaces” whether they have aged over time in storage or have been freshly applied during refurbishment. Although this is challenging, avoiding surface contact with the coating will reduce any risk of potential damage and contamination on a particulate or molecular level.
Examples

Below are some examples of thermal coating challenges that resulted in these valuable lessons learned:

<table>
<thead>
<tr>
<th>Thermal Coating Surface</th>
<th>Problems</th>
<th>Risk</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Silicate Radiator Coating, GSFC NS43C</td>
<td>Dry, aged powdery coating that generated particles with continued handling, and had outdated resistivity properties</td>
<td>Increased risk to particulate contamination and electrostatic discharge (ESD) anomalies</td>
<td>Vacuumed/cleaned loose particles off, touched up/re-coated damaged surfaces with Alion Z-93C55, and designated as a “no touch surface”</td>
</tr>
<tr>
<td>GSFC Silver Composite Coating, CCAg with Indium Tin Oxide (ITO)</td>
<td>Showed signs of crazing and delamination, which may have also damaged the conductive ITO layer</td>
<td>Increased risk to particulate contamination and ESD anomalies</td>
<td>Replaced with new ITO CCAg and designated as a “no touch surface”</td>
</tr>
<tr>
<td>Internal Baffle Coating</td>
<td>Structurally damaged due to age/storage/handling</td>
<td>Increased risk to particulate contamination</td>
<td>Removed coating and re-applied with a polyurethane Coating, and designated as a “no touch surface”</td>
</tr>
<tr>
<td>Germanium Black Kapton (GBK) on Multi-Layer Insulation (MLI) Blankets</td>
<td>Missing layers of GBK due to “wear and tear” damage</td>
<td>Increased risk of thermal, contamination and ESD anomalies</td>
<td>Replaced outer layers of the MLI blankets with new material</td>
</tr>
<tr>
<td>Kapton Multi-Layer Insulation (MLI) Blankets with Indium Tin Oxide (ITO)</td>
<td>Outer layers were damaged indicating lack of presence of the conductive ITO layer</td>
<td>Increased risk to ESD anomalies</td>
<td>Replaced outer layers of earth facing Kapton MLI blankets with GBK</td>
</tr>
</tbody>
</table>
Example 1.

- Analysis of Lessons Learned on DSCOVR White Silicate Coatings
Ex. 1 White Silicate Coatings

COATING

- GSFC NS43C is a white silicate based thermal control coating developed in the 1970s

HARDWARE

- Applied on most of the radiator surfaces of DSCOVR (previously Triana) in the late 1990s

GSFC White Paint NS43C

<table>
<thead>
<tr>
<th>Thermal Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Absorptance (α₈)</td>
<td>0.20</td>
</tr>
<tr>
<td>Normal Emittance (ε₈)</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Ex. 1 White Silicate Coatings

PROBLEMS

- NS43C coated surfaces were housed in a nitrogen purged storage environment for over a decade. This resulted in a dry powdery aged coating that generated particles during the refurbishment phases of the project (contamination problems).

- Physical signs of damage and “wear and tear” were also present. These damaged surfaces are fragile and thus, with continued handling were more susceptible to generate particles (contamination problems).

 - For example, spots of bare aluminum due to coating removal and dark “scruff” marks.

- At the time, NS43C was the best available coating to meet thermal requirements and dissipate charge on radiator surfaces. However, NS43C is no longer being manufactured these days and have outdated resistivity properties (electrostatic discharge problems).

 - Newer white silicate coatings exist to meet today’s mission requirements.
Ex. 1 White Silicate Coatings

SOLUTIONS

- NS43C coated surfaces were periodically vacuumed and gently wiped down by coatings experts to clean/remove loose particles.

- Touched up bare aluminum spots on the radiators using Z-93C55. The non-repairable surfaces were stripped and re-coated with Z-93C55.

 - **Alion Z-93C55** is a white electrically dissipative silicate based thermal control coating with resistivity properties to meet today’s mission requirements.

- Designated all white coating surfaces as “no touch surfaces” to minimize particle generation from handling through out the pre-launch phases of the project.

FUTURE WORK

- Evaluate effects of dry storage environments on coatings for extended periods and study new mitigation methods to reduce or encapsulate coating particulation.
Example 2.

- *Analysis of Lessons Learned on DSCOVR Reflective Thin Films*
Ex. 2 Reflective Thin Films

COATING

- **GSFC Silver Composite Coating (CCAg)** is a vapor deposited thin film coating consisting of layers of silicon oxide, aluminum oxide, and silver ($SiO2/Al2O3/Ag/Al2O3$). Layers of **Indium Tin Oxide (ITO)** may also be applied as a top layer for electrical conductivity purposes.

 - Historically, CCAg is very robust (if applied properly) with a low chance of removal from the substrate. ITO is typically very fragile with a high chance of removal from surface damage.

HARDWARE

- Applied to the “peacock” shaped radiator on the **Faraday Cup** in the late 1990s.
 - **DSCOVR’s Faraday Cup** will monitor the speed and direction of positively charged solar wind particles.

<table>
<thead>
<tr>
<th>Thermal Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Absorptance (α_s)</td>
<td>0.08</td>
</tr>
<tr>
<td>Normal Emittance (ε_N)</td>
<td>0.72</td>
</tr>
</tbody>
</table>
Ex. 2 Reflective Thin Films

PROBLEMS

- Visible signs of crazing, micro-cracking, and delamination effects were discovered on the CCAg coated area of the peacock shaped radiator.
- Due to its extended time in storage, the Kapton substrate probably retained some moisture, and thus caused adhesion issues between the CCAg and Kapton.
- This adhesion anomaly increases risk due to the Faraday Cup’s sensitivity to particulate contamination and electrostatic discharge (ESD) charging.
 - May pose a threat for the dispersion of conductive metal particles on the Faraday Cup.
 - May have damaged or removed the ITO layer on the CCAg coating.

IMPACT TO CONTAMINATION AND ESD

SOLUTIONS

- Re-deposited ITO CCAg onto 3 mil Kapton and applied onto peacock shaped radiator of the Faraday Cup.

FUTURE WORK

- Apply reflective thin films onto metal substrate (or hardware surface) rather than Kapton to reduce impact of moisture damage when in storage for extended periods of time.

Photo Credit: NASA/DSCOVR
Conclusions
Lessons Learned

The following are the lessons learned in thermal coatings from the DSCOVR mission:

■ LESSON 1.
It is recommended to replace thermal coatings that have significantly aged and/or have been placed in dry purged storage conditions for an extended period. Aged coatings that show physical signs of damage and “wear and tear” are more fragile, likely to damage even further with continued handling, and have an increased risk of generating particulate contamination.

■ LESSON 2.
It is recommended to verify the electrical resistivity of thermal coatings that have significantly aged and/or have been placed in dry purged storage conditions for an extended period. Aged coatings may have been damaged and may not exhibit the required conductivity. Aged coatings may also have outdated properties, and could have other replacement options available to meet mission requirements.

■ LESSON 3.
It is recommended to treat most thermal coatings as “no touch surfaces” whether they have aged over time in storage or have been freshly applied during refurbishment. Although this is challenging, avoiding surface contact with the coating will reduce any risk of potential damage and contamination on a particulate or molecular level.
Acknowledgements

- Valuable thermal coatings support on the DSCOVR mission was provided by individuals from NASA GSFC and Stinger Ghaffarian Technologies, Inc (SGT):
 - Mark Hasegawa NASA GSFC/Code 546
 - John Petro NASA GSFC/Code 546
 - Jack Triolo SGT Inc/Code 546
 - Alfred Wong SGT Inc/Code 546
 - Grace Miller SGT Inc/Code 546
 - George Harris SGT Inc/Code 546
 - Kenny O’Connor SGT Inc/Code 546
 - Lon Kauder SGT Inc/Code 546
 - Jim Heaney SGT Inc/Code 546

References

Contact Information

Nithin S. Abraham
Thermal Coatings Engineer
NASA Goddard Space Flight Center
Code 546, Contamination and Coatings Engineering Branch
E-mail: nithin.s.abraham@nasa.gov
Phone: (301) 614-7070