Using Classical Reliability Models and Single Event Upset (SEU) Data to Determine Optimum Implementation Schemes for Triple Modular Redundancy (TMR) in SRAM-based Field Programmable Gate Array (FPGA) Devices

M. Berg1, Member IEEE, H. Kim1, A. Phan1, C. Seidleck1, K. LaBel2, Member IEEE, J. Pellish2, Member IEEE, M. Campola2, Member IEEE

ASID in support of NASA-Goddard Space Flight Center, Laurel, MD 20707
N. Goddard Space Flight Center, Code 561.4, Greenbelt, MD 20771

Abstract: Space applications are complex systems that require intricate trade analyses for optimum implementations. We focus on a subset of the trade process, using classical reliability theory and SEU data, to illustrate appropriate TMR scheme selection.

Introduction

Table 1: Classical reliability models over time.

<table>
<thead>
<tr>
<th>Region</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation Hardened</td>
<td>$R(t) = e^{-\lambda t}$</td>
</tr>
<tr>
<td>TMR</td>
<td>$R(t) = e^{-3\lambda t}$</td>
</tr>
</tbody>
</table>

Equation (1) describes the four categories of SEUs in FPGAs [2]. Because the target logic, global units, and operation Figure 1b illustrates, a design can be modified into radiation hardened (RHR) geometries. The effects of classical reliability models include:

- The SEUs are associated with an untrusted resource or disabled logic and consequently do not affect system operation.
- The SEU has only one effect, either a Hard error or a Soft error. If only one Hard error occurs, the data will either be made the fault or stored in a memory. If only one Soft error occurs, the fault will be directly affected by the SEU, then the MIR will invalidate the fault and the fault will be removed from the system. A common signature of global logic SEUs in Classic TMR is that the data is unaffected by the SEU. However, during the SEU test, the system either flushes or the system will fail to operate.

SEU Errors and Fault Correction

SRAM-Based FPGA TMR Strategies: Strengths and Weaknesses

SRAM-Based FPGAs and TMR:

Because SEUs are the dominant component faults in unhindered SRAM-based FPGAs [5], an effective TMR strategy is needed to mitigate these errors. A TMR strategy is a scheme (that can make a variety of configuration SEUs) that is implemented in the TMR strategy to mitigate SEU-related errors. Table 1 contains the classical reliability and Mean time to failure (MTTF) values of the TMR schemes and the probabilities of a single event upset (SEU) data to error-rates. However, during the SEU testing, the system either flushes or the system will fail to operate.

SRAM-Based FPGAs and BTMR:

BTMR is a common approach to mitigate errors for two primary reasons:

- It requires the least number of voters (since savings) and can be applied to block-level designs (e.g., reconfigurable logic IP cores).
- BTMR is a simple, straightforward solution for fault-tolerant design that can be implemented in the field.

Table 2: Key term (MTTf) values and buses with SEU feedback to DFFs are used. However, during the SEU testing, the system either flushes or the system will fail to operate.

SEU Test Methodology

The primary design under investigation (DUI) was the Counter Array [2] as illustrated in Figure 7. Variations of the DUI were created using a variety of TMR strategies and are referred to as the MFTF and SEU data from Figure 10 can be used as the variables in the Table 1 or 11 equations to obtain the reliability graphs shown in Figure 11 and Figure 12.

Analysis of SEU Test Results

Mitigation Strength

The SEU fault affects multiple triplet copies within the same MW. If more than one of the triplet copies are not have a voter, then it is not a MW boundary.

Conclusion

The trend of the SEU test data analyses and characterization is to convert SEU data to error-rates. However, during the event upset (SEU) domain to the time (t) domain), important information in the lower LET region is lost. Referring to the SEU cross-section, the SEU rates are multiplied by the LET data to account for the time domain. For example, the data shown in Figure 10 were generated by the same counter array design in 32 v-nm CMOS technology and tested under catastrophic conditions. The data show that it is important to take into account the mission's required operating time near the time of failure for one unmitigated block, as well as the time intervals required to assess the reliability of a single point of failure (multiplier). However, during the SEU testing, the system either flushes or the system will fail to operate.

SRAM-Based FPGAs and BTMR:

BTMR is a common approach to mitigate errors for two primary reasons:

- BTMR is a simple, straightforward solution for fault-tolerant design that can be implemented in the field.

Table 2: Key term (MTTf) values and buses with SEU feedback to DFFs are used. However, during the SEU testing, the system either flushes or the system will fail to operate.

SRAM-Based FPGAs and BTMR:

BTMR is a common approach to mitigate errors for two primary reasons:

- BTMR is a simple, straightforward solution for fault-tolerant design that can be implemented in the field.

Table 2: Key term (MTTf) values and buses with SEU feedback to DFFs are used. However, during the SEU testing, the system either flushes or the system will fail to operate.