Preliminary analysis of effect of random segment errors on coronagraph performance

Mark T. Stahl, H. Philip Stahl,

Stuart B. Shaklan,
Jet Propulsion Laboratory
California Institute of Technology

SPIE Conference on Detection and Characterization of Exoplanets, 2015
Executive Summary

- Telescope manufacturers need a Wavefront Error (WFE) Stability Specification derived from science requirements.

Wavefront Change per Time

- Develops methodology for deriving Specification.
- Develop modeling tool to explore effects of segmented aperture telescope wavefront stability on coronagraph.

Caveats

- Monochromatic
- Simple model
- Band limited 4th order linear Sinc mask
Findings

• Reconfirms 10 picometers per 10 minutes Specification.

• Coronagraph Contrast Leakage is 10X more sensitivity to random segment piston WFE than to random tip/tilt error.

• Concludes that few segments (i.e. 0.5 to 1 ring) or very many segments (> 16 rings) has less contrast leakage as a function of piston or tip/tilt than an aperture with 2 to 4 rings of segments.
Aperture Dependencies

• Stability amplitude is independent of aperture diameter. It depends on required Contrast Stability as a function of IWA.

• Stability time depends on detected photon rate which depends on aperture, magnitude, throughput, spectral band, etc.

• For a fixed contrast at a fixed wavelength at a 40 mas angular separation, the wavefront stability requirement does have a ~4X larger amplitude for a 12-m telescope than for an 8-m telescope. And, it will have also have a shorter stability requirement for the same magnitude star.
Introduction
Exoplanet Science

The search for extra-terrestrial life is probably the most compelling question in modern astronomy

The AURA report: From Cosmic Birth to Living Earths call for

A 12 meter class space telescope with sufficient stability and the appropriate instrumentation can find and characterize dozens of Earth-like planets and make transformational advances in astrophysics.

The key technical challenge is “sufficient stability” for the appropriate instrumentation.

Imaging an ‘exo-Earth’ requires blocking 10^{10} of host star’s light.

Internal coronagraph (with deformable mirrors) can create a ‘dark hole’ with $<10^{-10}$ contrast.

Once dark hole is established, the corrected wavefront phase must be kept stable to within a few picometers rms between science exposures to maintain the instantaneous (not averaged over integration time) speckle intensity to within 10^{-11} contrast.

Krist, Trauger, Unwin and Traub, “End-to-end coronagraphic modeling including a low-order wavefront sensor”, SPIE Vol. 8422, 844253, 2012; doi: 10.1117/12.927143

Wavefront Stability

Independent of Architecture (Monolithic or Segmented), any drift in WFE may result in speckles which can produce a false exoplanet measurement or mask a true signal.

Important WFE stability sources include relative misalignment motion between optical components or shape changes of individual optical components or their support structures.

There are 2 primary source of Temporal Wavefront Error:

- Thermal Environment
- Mechanical Environment
Wavefront Stability - Thermal

Changes in orientation relative to the Sun changes the system thermal load. These changes can increase (or decrease) the average temperature and introduce thermal gradients.

In response to the ‘steady-state’ temperature change, variations in the Coefficient of Thermal Expansion (CTE) distribution cause static wavefront errors.

Stability errors depend on the temporal response of the mirror system to the thermal change, i.e. depends on mirror material.
Wavefront Stability - Thermal

For example, (while not designed for a UVOIR Exoplanet Science Mission) JWST experiences a worst-case thermal slew of 0.22K which results in a 31 nm rms WFE response. And it takes 14 days to ‘passively’ achieve < 10 pm per 10 min

HST (which is a cold-biased telescope heated to an ambient temperature) WFE changes by 10–25 nm every 90 min (1–3 nm per 10 min) as it goes in and out of Earth’s shadow.
Wavefront Stability - Mechanical

For example, (while not designed for a UVOIR Exoplanet Mission) JWST has a predicted WFE response of < 13 nm rms for temporal frequencies up to 70 Hz.

JWST has several mechanical modes:
 • PMA structure has ~40 nm rms ‘wing-flap’ mode at ~20 Hz
 • Individual PMSAs have ~20 nm rms ‘rocking’ mode at ~40 Hz

To meet a 10 pm stability specification requires these amplitudes to be reduced by 1000X.

JWST engineers (private conversation) estimate this could be done by combination of passive and active methods:
 • Ambient telescope will have 10X more damping.
 • Structure can be made stiffer
 • 140 dB of active vibration isolation (JWST has ~ 90 dB of isolation)

System Alignment

Misalignments produce low-order errors

- Lateral De-center between PM and SM produce Siedel Coma
- Tilt produces Siedel Astigmatism
- De-space produces Siedel Focus and Siedel Spherical

Siedel aberrations because system does not ‘refocus’ or adjust ‘tilt’ in real time to compensate for these errors.

Deformable Mirrors typically correct for these errors.

BUT, if these alignment errors are dynamic

\[\Delta \text{WFE} < 1 \text{ pm} \]

What is the right ΔWFE Stability Requirement?

Depends on Amplitude Sensitivity and Controllability
10 picometers per 10 minutes Wavefront Stability

In AMTD-1 2013 paper we:

- Proposed $ΔWFE < 10 \text{ pm per 10 minute Specification.}$
- And, considered Wavefront Stability issues of a Segmented Mirror

In AMTD-2 2014 paper we:

- Refined 10 pm per 10 minute Wavefront Error Stability Specification.
- Discuss the scaling of Aperture Size and Stiffness effect on Stability.

Controllability
Per Lyon and Clampin:

- If the telescope system cannot be designed near zero stability, then the WFE must be actively controlled.

- Assuming that DMs perfectly ‘correct’ WFE error once every ‘control period’, then the Telescope must have a WFE change less than the required ‘few’ picometers between corrections.

Co-Phasing Stability vs Segmentation

Per Guyon:

- Co-Phasing required to meet given contrast level depends on number of segments; is independent of telescope diameter.
- Time required to control co-phasing depends on telescope diameter; is independent of number of segments.
 - To measure a segment’s co-phase error takes longer if the segment is smaller because there are fewer photons.
 - But, allowable co-phase error is larger for more segments.

<table>
<thead>
<tr>
<th>Telescope diameter (D) & λ</th>
<th>Number of Segments (N)</th>
<th>Contrast</th>
<th>Target</th>
<th>Cophasing requirement</th>
<th>Stability timescale</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 m, 0.55 μm</td>
<td>10</td>
<td>1e-10</td>
<td>m_V=8</td>
<td>2.8 pm</td>
<td>22 mn</td>
</tr>
<tr>
<td>8 m, 0.55 μm</td>
<td>10</td>
<td>1e-10</td>
<td>m_V=8</td>
<td>2.8 pm</td>
<td>5.4 mn</td>
</tr>
<tr>
<td>8 m, 0.55 μm</td>
<td>100</td>
<td>1e-10</td>
<td>m_V=8</td>
<td>8.7 pm</td>
<td>5.4 mn</td>
</tr>
</tbody>
</table>

Controllability Period

Krist (Private Communication, 2013): wavefront changes of the first 11 Zernikes can be measured with accuracy of 5 – 8 pm rms in 60 – 120 sec on a 5th magnitude star in a 4 m telescope over a 500 – 600 nm pass band (reflection off the occulter). This accuracy scales proportional to square root of exposure time or telescope area.

Lyon (Private Communication, 2013): 8 pm control takes ~64 sec for a Vega 0th mag star and 500 – 600 nm pass band [10^8 photons/m^2-sec-nm produce 4.7 x 10^5 electrons/DOF and sensing error ~ 0.00073 radians = 64 pm at λ= 550 nm]

Guyon (Private Communication, 2012): measuring a single sine wave to 0.8 pm amplitude on a Magnitude V=5 star with an 8-m diameter telescope and a 100 nm effective bandwidth takes 20 seconds. [Measurement needs 10^{11} photons and V=5 star has 10^6 photons/m^2-sec-nm.] BUT, Controllability needs 3 to 10 Measurements, thus stability period requirement is 10X measurement period.
Integration Time for a 10 m telescope

Simulation Parameters

$\Delta m_{\text{mag}} = 25$ (to control background level)
Spectral Resolution = 10
SNR = 3 per channel
Throughput 42%
QE 80%
No detector noise
Instrument contrast = 1×10^{-10}
Zodi + exozodi = 3×23 mag/sq. arcsec
Wavelength 760 nm
Sharpness 0.08

Primary Mirror SFE Stability Specification

Telescope and PM must be stable < 10 pm for periods longer than the control loop period.

The exact length of the control period length depends on
- Aperture Diameter of Telescope
- ‘Brightness’ of Star used to sense WFE
- Spectral Bandwidth of Sensing
- Spatial Frequency Degrees of Freedom being Sensed
- Wavefront Control ‘Overhead’ and ‘Efficacy

In general, it seems like a ‘good’ consensus requirement is:

< 10 picometers per 10 minutes
Consequence of Controllability

There may be a practical limit to the telescope aperture size based on inner working angle needed to search dimmest star for which the control loop can be closed.

Could make Aperture larger to reduce time, but this is less stable.

Stars Within 30 pc and $L < 5 \, L_{\text{Sun}}$

$1 \, \text{AU} \times L^{1/2} = 40 \, \text{mas}$

$m_v = 6$

$m_v = 5$

Planet $D\text{mag} \geq 26$ at IHZ (quadrature)

Problem of Aperture

Per the AURA “Cosmic Birth to Living Earth” report, the science community desires a 12-m class collecting aperture.

To achieve a 12-meter class aperture requires segmentation.

Segmented apertures have many challenges:
- Prescription Matching
- Segmentation Pattern results in secondary peaks
- Segmentation Gaps redistribute energy
- Rolled Edges redistribute energy
- Segment Co-Phasing Absolute Accuracy
- Segment Co-Phasing Stability

To do exoplanet science requires that the segmented telescope must be co-phased.

To meet the 10^{-11} contrast stability requirement requires that the telescope co-phasing is stable.
Segmented Aperture Point Spread Function (PSF)

For perfectly phased telescope with no gaps & optically perfect segments, zeros of PSF_{seg} coincide with peaks of Grid function resulting in PSF_{tel} with a central peak size $\sim \lambda/D_{\text{tel}}$

In a real telescope: gaps, tip/tilt errors, piston errors, rolled edges & figure errors move energy from the central core to higher-order peaks and into the speckle pattern.

Fig. 2. a, Grid factor (regular spots) and the segment PSF, for a perfect telescope without gaps. Except for the central peak, all peaks of the grid factor fall into zeros of the segment PSF. b, The same, but with gaps between segments (relative gap size $\alpha=0.1$). Higher-order peaks are no longer coincident with PSF zeros. The same effect is seen for tip-tilt errors and segment-edge misfigure.

Tip/Tilt Errors

A segmented aperture with tip/tilt errors is like a blazed grating removes energy from central core to higher-order peaks.

If the error is ‘static’ then a segmented tip/tilt deformable mirror should be able to ‘correct’ the error and any residual error should be ‘fixed-pattern’ and thus removable from the image.

But, if error is ‘dynamic’, then higher-order peaks will ‘wink’.

Co-Phasing Errors

Co-Phasing errors introduce speckles whose size is inversely proportional to the segment size.

If the error is ‘static’ then a segmented piston deformable mirror should be able to ‘correct’ the error and any residual error should be ‘fixed-pattern’ and thus removable from the image.

But, if error is ‘dynamic’, then speckles will move.

Segmentation vs. Dark Hole

In our 2013 paper, we asked the question:

Is fewer large segments better or is many small better?

The context of the question related to the idea of engineering the aperture to place the diffraction orders inside the dark hole inner working angle or outside of the dark hole outer working angle.

At Mirror Technology Days 2014, Stuart Shaklan reported on a preliminary answer to this question.

Based on Contrast Leakage for piston or tip/tilt error as a function of number of segments in a square aperture, it is better to have less than 4 segments per diameter or more than 32 segments per diameter.

This paper seeks to continue this effort.

Contrast vs. Number of Segments

Square telescope
 2x2, 4x4, 8x8…64x64 segments
 1 nm piston rms random per segment

Coronagraph
 $\lambda = 600$ nm
 2-D 1-sinc2 Mask with 1$^{\text{st}}$ Transmission mas at 4 λ/D

Contrast vs. Number of Segments

Square telescope
- 2x2, 4x4, 8x8…64x64 segments
- 1 nm tip-tilt rms random per segment

Coronagraph
- $\lambda = 600$ nm
- 2-D 1-sinc2 Mask with 1st Transmission mas at 4 λ/D

Segmented Aperture Stability Requirement

This paper explores the stability requirements for a segmented aperture telescope for use with an internal coronagraph.

Stability sensitivity as a function of segmentation is reported.

Methodology is to create an integrated model of a segmented aperture telescope and a band-limited mask coronagraph.
Integrated Model
Using Matlab, we created an integrated model of a segmented aperture telescope and a single stage internal linear band-limited coronagraph: \{1 - \text{sinc}^2(x)\}.

Note: We are using $\gamma = 6$ zero padding
Integrated Model – Pupil Function

Pupil Function models the telescope

\[\text{Pupil}(x,y) = \text{Aper}(x,y) \times \text{Phase}(x,y) = A(x,y)e^{-i\Phi(x,y)} \]

Aperture Mask

- Can model Monolithic or Segmented Aperture
- Segments can be Hexagonal or Square
- Outer Aperture can be Hex Segment Boundary or Circle
- Square segmentation pattern from 1x1, 2x2, 4x4, …. 512x512
- Hex segmentation pattern is 0, 1, 2, … to 6 Rings.
- Gaps for Square Segments Only (ignore for this study)
- Can also do Central Circular Obscuration and ‘cross’ spiders

Phase defines telescope Wavefront Error

- Random Segment Rigid Body: piston, tip/tilt (assume that a DM corrects any slow or systematic error)
Input Pupil Functions
Integrated Model – Output

Output is Contrast (single realization & N average)

- 2D Plot
- 1D Profile
- Average inside ROI from 1-2 \(\lambda/D \), 2-5 \(\lambda/D \) & 4-10 \(\lambda/D \)

\[N_{\text{hex}} = 1 \ 1/0.1/0.01 \text{ rms piston } N = 16, \gamma = 6 \]
Error Bars

Error Bars on the 1D profile show the range of contrast values for the N individual model realizations.

Below is 16 individual realizations for a 1 ring Hex aperture with 0.10 nm rms random piston error.
Reproducability

Even with averaging 50 individual realizations, there is still some variability in the result

\[N_{\text{hex}} = 1, \]
\[0.01 \text{ nm piston,} \]
\[5 \text{ runs of 50} \]
WFE Sensitivity vs Number of Segments

- Contrast Leakage is 10X more sensitive to Piston than Tilt.
- Contrast Leakage is less for fewer segments
Future Work
Planned Future Work

- Random Seidel Power on each Segment for thermal drift
- Correlated Tip-Tilt Segment motion
- Add System Alignment Aberration:
 - Siedel Coma to simulate PM/SM alignment
 - Siedel Astigmatism to simulate PM Structure ‘flapping’
- Add a Planet
- Add more Central Obscuration options
- Add more SM Spider options
- Other Occulting Masks: Gauss, Sine, etc.
Conclusions
Conclusions

Developed modeling tool to explore effects of a segmented aperture telescope on a band-limited mask coronagraph.

Coronagraph Contrast Leakage is 10X more sensitivity to random segment piston WFE than to random tip/tilt error.

Coronagraph Contrast Leakage is less for Fewer Segments.

A ‘conservative’ WFE Stability Requirement continues to be: 10 picometers per 10 minutes
BACKUP
1x1 0.1 rms piston $N = 16$, $\gamma = 6$
For monolith, piston yields essentially a ‘perfect’ system
1x1 0.1 rms tip/tilt $N = 16$, $\gamma = 6$
For monolith, tip/tilt yields essentially a ‘perfect’ system
2 Ring Hex Aperture with no Wavefront Error
$N_{\text{hex}} = 1 \ 1/0.1/0.01 \text{ rms piston } N = 16, \gamma = 6$

1 Ring Hex Pattern with a Circular Aperture which makes the outer Segment Height half the diameter of the inner Segment.
$N_{\text{hex}} = 1 \ 1/0.1/0.01 \ \text{rms tilt} \ N = 16, \ \gamma = 6$

1 Ring Hex Pattern with a Circular Aperture which makes the outer Segment Height half the diameter of the inner Segment.
$N_{\text{hex}} = 1 \ 1/0.1/0.01 \ \text{rms piston} \ N = 16, \ \gamma = 6$
\(N_{\text{hex}} = 2 \ 1/0.1/0.01 \ \text{rms piston} \ N = 16, \ \gamma = 6 \)
$N_{\text{hex}} = 3 \ 1/0.1/0.01 \ \text{rms piston} \ N = 16, \ \gamma = 6$
$N_{\text{hex}} = 4$ 1/0.1/0.01 rms piston $N = 16$, $\gamma = 6$
$N_{\text{hex}} = 1 \ 1/0.1/0.01$ rms tip/tilt $N = 16, \ \gamma = 6$
$N_{\text{hex}} = 2 \ 1/0.1/0.01 \text{ rms tip/tilt } N = 16, \ \gamma = 6$
$N_{\text{hex}} = 3 \ 1/0.1/0.01 \text{ rms tip/tilt } N = 16, \ \gamma = 6$
$N_{\text{hex}} = 4 \ 1/0.1/0.01$ rms tip/tilt $N = 16, \gamma = 6$
NOTE

Aperture size is selected such that the hex segments have an whole number of pixels in them. This is accomplished via:

\[
ap_{\text{size}} = (4N_{\text{hex}}+2) \times \text{round}\left(\frac{512}{4N_{\text{hex}}+2}\right);
\]

Thus the \(ap \) sizes for \([1 \ 2 \ 3 \ 4 \ 5 \ 6]\) are \([510 \ 510 \ 518 \ 504 \ 506 \ 520]\).