WetLab-2
Wet Lab RNA SmartCycler
Providing PCR Capability on ISS

Macarena Parra, PhD
Project Scientist

Julie Schonfeld
Project Manager

Joint CSA/ESA/JAXA/NASA Increments 43 and 44 Science Symposium
January 21, 2015
WetLab-2 Objectives

• To place on the ISS as a research platform to facilitate space biology gene expression research.
 – Capability to process samples and perform qRT-PCR

• Facility will support multiple sample types (bacteria, cells, tissue)

• The analyzer will remain on ISS, while the experiment-specific disposable hardware will launch with the experiments.

• Also capable of supporting analysis of air, surface, water, and crew health.

• Validation Flight: SpaceX-7

• First PI Flight planned for SpaceX-9
Benefits of Wetlab-2 as an ISS Resource

• Wetlab-2 will provide on-orbit gene expression analysis data resulting in the following advantages
 – On-orbit analysis has the potential to reduce the need for downmass
 – Researchers can receive results within 24 hours of experiment run
 – On-orbit analysis is especially useful in cases where fixation or freezing of samples is problematic
 – On-orbit data can be used to guide the experiment in real-time
 • Provide indicators of best time to fix or otherwise conclude experiment
 • Allow researcher to change details (timeline, etc.) of future run without need for sample return, ground analysis and re-flight
 – System can be used to provide verification of results from ground analysis

• Facility can also be used for microbial monitoring
 – Will indicate if harmful bacteria are present in water supply, surfaces, etc.
 – Results would be available in as little as 90 min compared to current testing methods that take 3-6 months because they require sample return
ISS qRT-PCR Process

Animal Samples from Dissections or Cold Stowage

Cell culture or Microbial cultures

Sample Prep

Tissue Disruption

qRT-PCR

RNA

Stabilized RNA

Descent

Examples:
- BIOS System (Ames)
- CGBA Science Inserts (BioServe)
- Biomodule (BioServe)
- CellCult (BioServe)
- ADF Cell (TechShot)
- ESA or JAXA Experiment Container
- Future Culture Hardware

ISS Operations/Data Management

ARC Data Verification/Archive

Science Stakeholder/Researcher
Fluidics Components

- Sample Transfer Tool (STT)
 - Extracts sample from a source
 - Delivers sample to SPM
- Sample Prep Module (SPM)
 - Two versions (mammalian, bacterial)
 - Lyses cells and extracts RNA
- Reaction Assembly Module (RAM)
 - Removes bubbles from RNA sample
 - Loads Repeater pipette
- ReactionTube Assembly
 - Custom cap/septum for loading in microgravity
 - Mounted on 8-tube rotor
- Reaction Tube Loading Rotor
 - Contains 8 tubes – serves as tube carrier
 - Serves to spin sample into window
SmartCycler Hardware

- Provides Quantitative Real-time Polymerase Chain Reaction (qRT-PCR)
- Ruggedized COTS instrument designed for field work
- Provides 16 Wells and multiplexing capability (4 channels/well)
- Will be mounted on Bogun Arm on rack front in the aisle
Fluidics Hardware Operations

- Tissue Syringe
- Mammalian Cells
 (Session 4)
- Bacterial Cells
 (Session 3)
 - ACT2
- Validation
 (Session 2)
 - Buffer Syringe
- RNA Syringe
- SPM (2 versions)
- Repeater Pipette
- Reaction Tube
- Rotor
- SmartCycler
COTS On-Orbit Interface

OCAMS Used for Uplink/ Downlink Data

Pantry Laptop

Disposable Glove Bag

SmartCycler (15A Fuse)

ISS Inverter (12A Fuse)

To Rack 120 VDC
Use of WetLab-2 on ISS

• The Decadal Survey calls for conducting science experimentation on-orbit in a fashion as similar as possible to that of ground laboratories, allowing for rapid/real-time on-orbit data acquisition and interactivity with experiments driven by analysis results.
• The WetLab-2 project provides multiple capabilities for processing and analyzing biological tissue samples through qPCR to provide gene expression data.
• Sample preparation was designed specifically to minimize complexity and crew time with RNA purified in under an hour.
• Real-Time PCR machine selected for flight is a robust COTS unit that was designed for field work.
• WetLab-2 begins the process for PIs and ISS crews to utilize ISS as a fully working laboratory.
Goal of Validation Flight: On-orbit test and check-out of the WetLab-2 system in a systematic way to ensure it will return valid data to future researchers.

Objectives of Validation Flight:

- Install software and set-up hardware (Session 1)
- Does real-time PCR data generated on-orbit match data on earth? (Session 2)
 - No convection or other microgravity related issues
 - Validate SmartCycler, RAM, tube loading and rotor functions
- Does the Sample Processing Module function correctly on-orbit? (Session 3)
 - All fluidic manipulations function properly
 - Prove out system with first sample type (*E. coli*)
 - Test system using on-orbit isolated RNA as input to SmartCycler
- Does the Homogenizer unit function correctly on-orbit? (Session 4)
 - All fluidic manipulations function properly
 - Prove out system with second sample type

Flight results from each session will be compared to results from ground controls. Ground controls will be run with a 2-24 hour delay from the flight samples.
WetLab-2 will:

• Facilitate space biology gene expression research
 – Establishes a qRT-PCR analytical instrument on the ISS.
 – Provides a Standard Transfer System for sampling among Wetlab-2 and other bioprocessing & analytical systems (Techshot ACT2)
• Reduce need for downmass of samples due to on-orbit analysis
• Allow PIs and ISS crews to begin to utilize the ISS as a fully working laboratory
• Allow for on-orbit analysis of air, surface, water, and clinical samples to monitor environmental contaminants and crew health.

Effort to assess awarded proposals for those that can benefit from the WetLab-2 facilities is ongoing. More than 50% of proposals plan to use gene expression as part of their research.