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Durable Environmental Barrier Coating Systems for Ceramic 

Matrix Composites (CMCs): 
Enabling Technology for Next Generation Low Emission, High Efficiency and 

Light-Weight Propulsion

— NASA Environmental barrier coatings (EBCs) development objectives

• Help achieve future engine temperature and performance goals

• Ensure system durability – towards prime reliant coatings

• Establish database, design tools and coating lifing methodologies

• Improve technology readiness

Fix Wing Subsonic Aircraft Supersonics Aircraft
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NASA Environmental Barrier Coating Development Goals

* Recession: <5 mg/cm2 per 1000 hr (40-50 atm, Mach 1~2) 

** Component strength and toughness requirements

• Emphasize temperature capability, performance and durability 

• Develop innovative coating technologies and life prediction approaches

• 2700°F (1482°C) EBC bond coat technology for supporting next generation

• 2700-3000°F (1482-1650°C) turbine and CMC combustor coatings

– Meet 1000 hr for subsonic aircraft and 9,000 hr for supersonics/high speed aircraft hot-
time life requirements 

2400°F (1316°C) Gen I and Gen II  SiC/SiC 

CMCs

3000°F+ (1650°C+)

Gen I

Temperature 

Capability (T/EBC) surface

Gen II – Current commercial
Gen III

Gen. IV

Increase in T 

across T/EBC

Single Crystal Superalloy

Year

Ceramic Matrix Composite

Gen I

Temperature 

Capability (T/EBC) surface

Gen II – Current commercial
Gen III

Gen. IV

Increase in T 

across T/EBC

Single Crystal Superalloy

Year

Ceramic Matrix Composite

2700°F (1482C)

2000°F (1093°C)

Step increase in the material’s temperature capability

3000°F SiC/SiC CMC 

airfoil and combustor 

technologies

2700°F SiC/SiC thin 

turbine EBC systems for 

CMC airfoils

2800ºF 

combustor 

TBC

2500ºF 

Turbine TBC 2700°F (1482°C) Gen III  SiC/SiC CMCs 



4

Outline

─ Environmental barrier coating system development: challenges 

and limitations

─ Advanced environmental barrier coating systems (EBCs) for 

CMC airfoils and combustors
• NASA EBC systems and material system evolutions

• Current turbine and combustor EBC coating emphases

• Advanced EBC development: processing, testing and durability

─ Design tool and life prediction perspectives of coated CMC 

components

─ Advanced CMC-EBC rig demonstrations

─ Summary and future directions
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Fundamental Recession Issues of CMCs and EBCs

- Recession of Si-based Ceramics

(a) Convective; (b) Convective with film-cooling

- Low SiO2 activity EBC system development emphasis

- Advanced rig testing and modeling

More complex recession behavior of CMC and EBCs in High Pressure Burner 

Rig

SiO2 + 2H2O(g) = Si(OH)4(g)

Recession rate = const. V1/2 P(H2O)
2/(Ptotal)

1/2

Combustion gas

SiO2 + 2H2O(g) = Si(OH)4(g)

Combustion gas

Cooling gas

(a) (b)
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Fundamental Recession Issues of CMCs and EBCs -

Continued

Combustor coating Turbine coating
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- Early generation coatings - EBC systems

Weight Loss of SiC in High Pressure 

Burner Rig

6 atm 20 m/s

HfO2 based low k - APS HfO2 based low k – EB-PVD
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SiC/SiC CMC and EBC Recession Kinetics Determined for 

CMCs-EBCs in High Pressure Bruner Rig and Laser Steam Rig 

Testing

High temperature recession kinetics for film-cooled and 

non-film cooled Gen II SiC/SiC CMCs

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Recession rate, mg/cm
2
-hr

Film cooled recession at 2400°F

Film cooled recession at 2100°F

Non-film cooling recession at 2100°F

Non-film cooling recession at 2400F 

(model extrapolated to 300m/s gas velocity)

300 m/s, 16 atm

Examples of environmental barrier coating 

recession in laboratory simulated turbine 

engine conditions 

― Determined recession under complex, and realistic simulated turbine conditions  

1316°C

1316°C

1150°C

1150°C
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Degradation Mechanisms for Si Bond Coat

— Silicon bond coat melts at 1410°C (melting point)

— Fast oxidation rates (forming SiO2) and high volatility at high temperature

— Low toughness at room temperature (0.8-0.9 MPa m1/2; Brittle to Ductile Transition 

Temperature about 750°C)

— Low strength and high creep rates at high temperatures, leading to coating 

delamination

— Interface reactions leading to low melting phases
• A more significant issue when sand deposit Calcium- Magnesium – Alumino-Siliacte (CMAS) 

is present

— Si and SiO2 volatility at high temperature (with and without moisture)

Brittle to Ductile transition in polycrystalline Si
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Degradation Mechanisms for Si Bond Coat – Interface reactions

— Significant interfacial pores and eutectic phases formation due to the water vapor 

attack and Si diffusion at 1300°C

— Heat flux condition further limit the use tempertatures

Si bond coat after 1350°C, 50 hr

furnace test in air; 1” dia plasma 

sprayed EBC button specimen

Hot pressed BSAS+Si button 

specimen  after 1350°C, 50 hr

furnace test in air

MulliteBSAS

Si

SEM images Interface reactions at 1300°C; total 200 hot hours
BaO-Al2O3-SiO2 ternary phase diagram

Si bond coat

Interface Si bond coat melting of 

selected coating systems, under laser 

heat flux tests, 1” dia button specimen
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̶ Advanced EBC system developments

Improved phase stability, 

recession resistance of 

top coat

Increased phase 

stability and 

toughness

Gen I (EPM)

1995-2000

R&D Award

Gen II (UEET)

2000-2004

Gen III (UEET)

2000-2005 

R&D Award (2007)

Gen IV (FAP)

2005-2011

R&D Award (2007) 

coating turbine 

development

Gen V-VI (FAP -

ERA)

2007 – 2012  to 

present

Gen VII (FAP)

2009 – present

Patent13/923,450

PCT/US13/46946

Engine 

Components:

Combustor Combustor/ 

(Vane)

Combustor/

Vane

Vane/

Blade

- Vane/Blade EBCs

- Equivalent APS 

combustor EBCs

Airfoil components

Top Coat: BSAS (APS) RE2Si2O7 or 

RE2SiO5 

(APS)

- (Hf,Yb,Gd,Y) 2O3 

- ZrO2/HfO2+RE 

silicates

-

ZrO2/HfO2+BSAS

(APS and EBPVD)

RE-HfO2-Alumino 

silicate 

(APS and/or 100% EB-

PVD) 

RE-HfO2-X 

advanced top coat 

RE-HfO2-graded 

Silica

(EB-PVD)

Advanced EBC

Interlayer:  

-- --

RE-HfO2/ZrO2-

aluminosilicate 

layered systems

Nanocomposite graded 

oxide/silicate

Gen IV interlayer 

not required 

(optional)

EBC: Mullite+ BSAS BSAS+Mullite RE silicates or 

RE-Hf mullite

RE doped mullite-HfO2

or RE silicates

Multi-component 

RE silicate systems

Multicomponent 

RE-silicate /self 

grown

Bond Coat: Si Si Oxide+Si bond 

coat

HfO2-Si-X,

doped mullite/Si 

SiC nanotube 

Optimized Gen IV 

HfO2-Si-X bond coat

2700°F bond coats

RE-Si+X systems

Thickness 10-15 mil 10-15 mil 15-20 mil 10 mil 5 mil 1 -3 mils

Surface T: Up to 2400°F 2400°F 3000°F/2400CMC 2700°F/2400F CMC 3000°F

Bond Coat  T: Limited to 

2462°F

Limit to 

2462°F

Limit to 2642°F Proven at 2600°F +; 

Advancements 

targeting 2700°F 

2700°F (2011 goal)
Advanced compositions & processing for 

thinner coatings, higher stability and 

increased toughness

Challenges 

overcome by  

advancements:
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― Major development milestones:
• 1995-2000: BSAS/Mullite+BSAS/Si

• 2000-2004: RE2Si2O7 or RE2SiO5/BSAS+Mullite/Si

• 2000-2004 - 3000°F EBC systems:  HfO2 systems (HfO2 version four-component 

low k) / RE2Si2O7 or RE2SiO5 / BSAS+Mullite/Si and Oxide+Si bond coats; 

component demonstrations

– Modified mullite (with transition metal and RE dopants) to replace BSAS+mullite

– Many compound oxide top coat materials explored

• 2005-2011 - Turbine coating systems: Multi-component, graded HfO2-Rare Earth 

Oxide-SiO2/ multi-component Rare earth Silicate/ HfO2-Si systems

– RE-HfO2-X/Multicomponent RE-silicate / HfO2-Si +X (doped)

• 2009-present: Improved EBC compositions in progress; RE-Si bond coat
– (Gd,Yb,Y)Si bond coat and top coat



National Aeronautics and Space Administration

www.nasa.gov

NASA EBC Technology for SiC/SiC Ceramic Matrix 

Composites: Current State of the Art - Continued

− Develop processing capabilities, experience and demonstrate feasibilities in 

various techniques: air plasma spray, Electron Beam - Physical Vapor 

Deposition (EB-PVD), Plasma Sprayed-Physical Vapor Deposition (PS-PVD):

• Efforts in developing turbine EBC coatings with Directed Vapor Technologies 

using Directed Vapor EB-PVD: Turbine Airfoils

• In-house APS, and Triplex Pro APS (with Sulzer/Oerlikon Metco) - for Combustor 

applications

• Cathodic arc and Magnetron PVD processes: bond coat developments

• In-house PS-PVD

• Some planned EBCs DVM/DVC coatings (with Praxair): aiming at combustor 

EBC
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Environmental Stability of Selected Environmental Barrier 

Coatings Demonstrated in NASA High Pressure Burner Rig

― EBC stability evaluated on SiC/SiC CMCs in high velocity, high pressure 

burner rig environment

― Advanced EBC recession met NASA Fundamental Aeronautics Project goals 

(2011) 

Stability of selected coatings systems
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NASA Turbine Environmental Barrier Coating 

Developments - Continued
̶ Advanced EBC top coats tested in coupons under laser heat flux cyclic rigs up 1700°C

̶ Coated subelements coating tested up 1500°C under laser thermal gradient for 200 hr

̶ EBC systems show high stability in High Pressure Burner Rig Tests

̶ Low thermal conductivity of 1.2 W/m-K for optimized turbine airfoil coatings

High pressure burner rig, 16 atm, 31 hr –

no measureable weight loss
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Development and Processing of Directed Vapor Electron 

Beam - Physical Vapor Deposition (EB-PVD) 
─ NASA programs in supporting processing developments and improvements with Directed 

Vapor Technologies International, Inc.
• Multicomponent thermal and environmental barrier coating vapor processing 

developments
• High toughness turbine coatings
• Affordable manufacture of environmental barrier coatings for turbine components 

Directed Vapor Processing systems

NASA HfO2-Si bond 

coat on SiC/SiC

NASA Hybrid 

EBC on SiC/SiC
Advanced multi-component and multilayer turbine EBC systems

HfO2-Si bond coat
EBC

Alternating layered High toughness EBC

Processed EBC system
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— Focused on advanced composition and processing developments using state-

of-the-art techniques

— Improved processing envelopes using high power and higher velocity, graded 

systems processing for advanced TEBCs and thermal protection systems

Plasma Sprayed-Physical Vapor Deposition (PS-PVD) 

Processing of Environmental Barrier Coatings 

Sulzer Triplex Pro system having high 

efficiency and high velocity processing

EBCs

HfO2-Si bond coat

NASA EBC processed by Triplax pro 

EBC coated SiC/SiC CMC Inner and 

Outer Liner componentsInner and outer liner articles
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Plasma Sprayed-Physical Vapor Deposition (PS-PVD) 

Processing of Environmental Barrier Coatings 
─ NASA PS-PVD and PS-TF coating processing using Sulzer newly developed technology

• High flexibility coating processing – PVD - splat coating processing at lo pressure (at ~1 torr)

• High velocity vapor, non line-of-sight coating processing for complex-shape components

• Emphasis on fundamental process and powder composition developments for EBC 

depositions

Nozzle section view Mid section view End section (sample side) view

NASA hybrid PS-PVD coater system

100 kW power, 1 torr operation pressure 

Processed coating systems
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Advanced EBC Coating Material Strength Evaluations
– EBC and bond coat constituents are designed with high strength and high 

toughness to improve coating durability
• Advanced EBC 150-200 MPa strength achieved at high temperature

• Multicomponent silicates showed excellent high temperature properties

• Toughness 3-4 MPa m1/2 also achieved (tested at room temperature)

– HfO2-Si based systems showed promising strength and toughness

– More advanced bond coats showed higher temperature capabilities and improved 

strength
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NASA EBC Bond Coats for Airfoil and Combustor EBCs
– Patent Application 13/923,450 PCT/US13/46946, 2012

– Advanced systems developed and to improve Technology Readiness Levels 
(TRL)

– Composition ranges studied mostly from 50 – 80 atomic% silicon
• PVD-CVD processing, for composition downselects - also helping potentially develop a low cost CVD 

or laser CVD approach
• Compositions initially downselected for selected EB-PVD and APS coating composition processing
• Viable EB-PVD and APS systems downselected and tested; development new PVD-CVD approaches

YSi YbGdYSi GdYSi

ZrSi+Y YbGdYSi GdYSi

ZrSi+Y YbGdYSi GdYSi

ZrSi+Ta YbGdYSi GdYSi

ZrSi+Ta YbGdSi GdYSi-X

HfSi + Si YbGdSi GdYSi-X

HfSi + YSi YbGdSi

HfSi+Ysi+Si YbGdSi

YbSi YbGdSi

HfSi + YbSi 

YbSi

GdYbSi(Hf)

YYbGdSi(Hf) YbYSi

YbHfSi

YbHfSi

YbHfSi

YbHfSi

YbHfSi

YbSi

HfO2-Si;

REHfSi

GdYSi

GdYbSi

NdYSi

HfO2-Si

YSi+RESilicate

YSi+Hf-RESilicate

Hf-RESilicate

Used in ERA 
components as 
part of bond coat 
system

Hf-RE-Al-Silicate

Used also in ERA 
components
Used in ERA 
components as 
part of bond coat 
system

PVD-CVD EB-PVD APS*

REHfSi

FurnaceLaser/C

VD/PVD

Process and 

composition 

transitions

APS*: or plasma spray related 

processing methods
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− 1500°C (2700°F) capable RESiO+X(Ta, Al, Hf, Zr …) EBC bond 

coat compositions and related composite coatings developed for 

combustor and turbine airfoil applications

− The bond coat  systems demonstrated durability in the laser high 

heat flux rig in air and steam thermal gradient cyclic testing

− The bond coatings also tested in thermal gradient mechanical 

fatigue and creep rupture conditions 

NASA EBC Bond Coats for Airfoil and Combustor EBCs
– Patent Application 13/923,450 PCT/US13/46946, 2012

Continued

Laser high heat flux cyclic rig tested Zr/Hf-RE-Si series 

EBC bond coats on the bond coated woven SiC/SiC

CMCs at 1450°C in air and full steam environments

RESi-Hf, 100 hr RESi+Al, 50 hr RESi+Al, 50hr 

100% steam

Steam heat flux test rig of 

the bond coat

Processed Subelement

Selected 

Composition Design 

of Experiment 

Furnace Cyclic Test 

Series 1500°C, in air, 

Demonstrated 500hr 

durability

RE-Si-Hf

RE-Si/EBC
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Furnace Cycle Test Results of Selected RESi and ZrSi + 

Dopant Bond Coats
- Testing in Air at 1500°C, 1 hr cycles

– Multi-component systems showed excellent furnace cyclic durability at 1500°C
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Advanced Bond Coats for Turbine Airfoil and Combustor 

EBCs Developed - Continued

An oxidized 

bond coat 

after 1500°C 

100 h creep 

testing

̶ 1500°C (2700°F) capable RESiO+X(Ta, Al, Hf, Zr …) 

EBC bond coat compositions and related composite 

coatings developed for combustor and turbine airfoil 

applications

̶ Oxidation kinetics studied using TGA in flowing O2

̶ Parabolic or pseudo-parabolic oxidation behavior 

observed
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Advanced EBC developments – Some Hybrid APS-PVD 

Systems and Qualification Tests
• EB-PVD HfO2-RE2O2 (Silicate) top coat EBC with 

plasma-spayed multi-component advanced silicate 

sublayer EBC/HfO2-Si bond coat systems

• Low thermal conductivity ranging 1.0 - 1.7 W/m-K 

• Demonstrated high pressure environmental stability 

at 2600-2650°F, 12-20 atm in the high pressure 

burner rig

2” diameter ND3 

EBC/SiC/SiC

specimen after 

testing in the high 

pressure burner rig

At 2600°F

High pressure burner rig tested new ND series Hybrid 

EBC systems coated on 2” diameter Gen II Prepreg

SiC/SiC CMCs

ND2 ND6 ND7

Surface spallation
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Understanding High Velocity Gas Flow Interactions –

Columnar Structure and Toughness Considerations
− High velocity, high pressure gas impingements and shear force induced erosion in turbine 

engine flow condition can be of concern for low toughness coating systems

− High toughness, optimum coating density and architectures are required for durability  

Drag Coefficient Cd 0.4

Pressure P, psi 750 5171068 Pa

Velocity V 1200 m/sec

Temperature T, F 3000 1921.039 K

Gas Constant R 461.5 J/Kg/K

Column Height h 0.0002 m

Column Radius r 0.00001 m

Stress 1.34E+08 Pa

Modeled parameters
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Thermal Gradient Tensile Creep Rupture Testing of Advanced 

Turbine Environmental Barrier Coating SiC/SiC CMCs

─ Advanced high stability multi-component hafnia-rare earth silicate based turbine 

environmental barrier coatings being successfully tested for 1000 hr creep rupture 

─ EBC-CMC creep, fatigue and environmental interaction is being emphasized 

Cooling 

shower head 

jets

Test specimen
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Gen II CMC with advanced EBC

tested 20 ksi, 1316°C

Gen II CMC-uncoated

Tested at 20 ksi, 1316°C

Gen II CMC uncoated

Tested at 15 ksi, 1316°C

Typical premature 

failure

Tsurface = 2700°F

Tinterface= 2500°F

TCMC back=2320°F

Gen II CMC with advanced EBC

Tested at 15 ksi & heat flux

Tsurface = 2750ºF

Tinterface = 2450ºF

TCMC back = 2250ºC

Gen II CMC with advanced EBC

Tested at 20 ksi & heat flux

2400 F

2400 F

2250 F2400 F
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̶ Advanced environmental barrier coatings – Prepreg CMC systems demonstrated long-term 

EBC-CMC system creep rupture capability at stress level up to 20 ksi at TEBC 2700°F, TCMC 

interface ~2500°F

̶ The HfO2-Si bond coat showed excellent durability

Thermal Gradient Fatigue-Creep Testing of Advanced 

Turbine Environmental Barrier Coating SiC/SiC CMCs -

Continued

Hybrid EBCs on Gen II CMC after 100 hr

low cycle creep fatigue testing

EBCs on Gen II CMC after 1000 hr fatigue 

testing
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Fatigue Tests of Advanced RESi Bond Coats and EBC Systems

Tested, SA Tyrannohex with bond coat only

Tested, SA Tyrannohex with EBC system 188

• Uncoated CMCs, Bond coat/CMC and EBC/Bond Coat/CMC systems tested flexural fatigue 

tests with 15 Ksi loading

• Heating provided by steady-state laser

• Strength and Fatigue cycles tested

• Fatigue tests at 3 Hz, 2600-2700°F, stress ratio 0.05, surface tension-tension cycles

SiO2

Achieved long-term fatigue lives 

(near 500 hr) with EBC at 2700°F

Tested specimen cross-sections
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Thermal Gradient Fatigue-Creep Testing of Advanced 

Turbine Environmental Barrier Coating SiC/SiC CMCs -

Continued

0 1 10
-7

2 10
-7

3 10
-7

4 10
-7

5 10
-7

6 10
-7

Gen II MI SiC/SiC 8 Ply balanced 0/90
Gen II MI SiC/SiC 6 ply unbalanced 0/90
CVI Woven SiC/SiC
Advance EBC system coated 8 ply balanced 0/90
Advanced  thin bond coat only - 8 ply balanced 0/90

Creep rates, 1/s

S
iC

/S
iC

 C
M

C
s/

E
B

C
 C

o
at

ed
 S

iC
/S

iC
 C

M
C

s

103 MPa, 1315°C in air

EBC coated

Unbalanced or Higher fiber 

volume fraction CMCs

0 1 10
-7

2 10
-7

3 10
-7

4 10
-7

5 10
-7

15 Ksi, thermal gradient_EBC coated CMC (TCMC average 1315C)
20 Ksi, thermal gradient_EBC coated CMC (TCMC average 1315C)

20 Ksi EBC coated CMC at 1315C
20 Ksi EBC coated CMC at 1315C Fatigue maximum stress 20 Ksi
20 Ksi EBC un-coated CMC at 1315C

Creep rates, 1/s

S
iC

/S
iC

 C
M

C
s/

E
B

C
 C

o
at

ed
 S

iC
/S

iC
 C

M
C

s

103/138 MPa, 1315°C in air

Thermal gradient 

tested, total creep 

strains 1.0-1.2% 

over 1000 hrs, no 

failure

Failed; total creep strains 
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̶ Effects of temperature, load, heat flux and environments (steam and combustion 

air) for coated SiC/SiC CMC are being investigated

̶ EBC coated CMCs showed improved durability   
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Advanced HfO2-Si Bond Coats: Effects of Compositions on 

Strength and Creep Rates

– The HfO2-Si composite coatings showed high strength, and improved creep 

resistance at high temperatures

– Increased HfO2-HfSiO4 contents improve high temperature strength and creep 

resistance
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EBC-CMC Thermal Gradient Creep Rupture and 

Delamination Modeling
̶ An equivalent stress model is established for EBC multicrack stress intensity modeling: 

emphasize creep, thermal gradient and stress rupture interactions

̶ Benchmark failure modes established in EBC systems
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EBC-CMC Thermal Gradient Creep Rupture and 

Delamination Modeling - Continued
̶ An equivalent stress model is established for EBC multicrack stress intensity modeling: 

emphasize creep, thermal gradient and stress rupture interactions

̶ Benchmark failure modes established in EBC systems

Finite Element Analysis (FEA) Modeling
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EBC-CMC Thermal Gradient Creep Rupture and 

Delamination Modeling – Bond Coat Stiffness Effect
─ Delamination driving forces: uniform remote applied stress case, 0.300 mm thickness coating 

with ~ 0.06% total strain

─ Effect of bond coat elastic modulus: E=150 GPa vs. E=50 GPa

─ Strong bond coats expected to have less creep damage (lower strain energy release rate G for 

strong bond coats)
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EBC-CMC Thermal Gradient Creep Rupture and 

Delamination Modeling – Bond Coat Stiffness Effect
─ Advanced EBCs designed with higher strength and stiffness to improve 

creep, fatigue, and cyclic durability 
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The Advanced EBC on SiC/SiC CMC Turbine Airfoils Successfully 

Tested for Rig Durability in NASA High Pressure Burner Rig

̶ NASA advanced EBC coated turbine vane subcomponents tested in rig 

simulated engine environments (up to 240 m/s gas velocity, 10 atm), 

reaching TRL of 5

̶ Turbine EBCs generally intact (some minor partial coating top coat 

spalling for the Prepreg MI SiC/SiC vane) 

̶ Some minor CMC vane degradations after the testing

EBC Coated CVI SiC/SiC vane after 31 

hour testing at 2500°F+ coating 

temperature

EBC Coated Prepreg SiC/SiC vane after 

21 hour testing at 2500°F

EBC Coated Prepreg

SiC/SiC vane tested 75 

hour testing at 2650°F

Uncoated 

vane tested 

15 hr
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The EBC Coated SiC/SiC CMC Combustor Liner Successfully 

Demonstratetd for Rig Durability in NASA High Pressure Burner 

Rig (First Inner Liner Processed at Sulzer with Triplex Pro)
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─ Tested pressures at 500 psi external for outliner, and up to 220 psi inner liners in the 

combustion chamber (16 atm), accumulated 250 hours in the high pressure burner rig

─ Average gas temperatures at 3000°F (1650°C) based on CEA calculations, the liner EBCs 

tested at 2500°F (1371°C) with heat fluxes 20-35 W/cm2, and the CMC liner component at 

1800-2100°F (~1000-1100°C) 
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Summary

• Durable EBCs are critical to emerging SiC/SiC CMC component technologies

─ The EBC development built on a solid foundation from past experience, evolved with the 

current state of the art compositions of higher temperature capabilities and stabilities

─ Multicomponent EBC oxide/silicates

─ RE-Si bond coat

─ Advanced EBC processing and testing capabilities significantly improved, helping more 

advanced coatings to be realized for complex turbine components

─ Better understood the coating failure mechanisms, and helping developing coating 

property databases and life models, aiming at developing higher stability, higher strength 

EBC and bond coats

─ Emphasized thin coating turbine and combustor EBC coating configurations, 

demonstrated component EBC technologies in simulated engine environments – TRL 5
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Future Directions and Opportunities
• High stability turbine airfoil and combustor coating system development continues 

to be a high priority

– Advanced composition development, optimization, down-select a EBC coating 

System(s)

– Reduce recession rates, improve the temperature stability and complex environment 

resistance, such as in CMAS environments

– Low thermal conductivity

• Advanced environmental barrier coatings with significantly improved thermal and 

mechanical load capability

– Emphasize coating strength and toughness

– Better understand and improve creep, fatigue, and environment interactions

– Design and demonstrate long-term high heat flux cyclic stability

• Materials and component system integration

– Develop robust and economical processing capabilities

– Optimize and validate coatings with more complex sub-elements and components 

• Laboratory simulated high heat flux stress, environment testing and life prediction 

methodology development, validating model developments
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