Optic Nerve Sheath Mechanics in VIIP Syndrome

Julia Raykin 1, Andrew Feola 1, Rudy Gleason 1, Lealem Mulugeta 2, Jerry Myers3, Emily Nelson3, Brian Samuels4 and C. Ross Ethier1

1Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
2NASA Glenn Research Center, Cleveland, OH
3Universities Space Research Association, Houston, TX
4Department of Ophthalmology, U. Alabama at Birmingham, Birmingham, AL

BACKGROUND – VIIP Syndrome
Visual Impairment and Intracranial Pressure (VIIP) syndrome results in a loss of visual function and occurs in astronauts following long-duration spaceflight. Understanding the mechanisms that lead to the ocular changes involved in VIIP is of critical importance for space medicine research.

Cephalad fluid shift hypothesis
In microgravity, the pressure gradient in the body is significantly reduced, resulting in higher pressures in the head (increased intracranial pressures, ICP)

VIIP occurs in ~40% of US astronauts
Some astronauts present with optic nerve distension and/or a kink in the optic nerve after return to earth strongly suggesting that axial distension and tissue remodeling in response to ICP increases may be taking place.

METHODS – Mechanical Testing
- CSF pressure was cycled between 0-60 mm Hg at different IOPs
- Axial stretch was controlled via micrometers
- Outer diameter of nerve sheath was recorded
- Axial force was measured with a force transducer

Mechanical System

RESULTS
In vivo axial stretch measurements

Axial alignment of collagen fibers in the dura
(Second Harmonic Generation)

CONCLUSIONS
- Large in vivo axial stretch (~100%)
- Large deformations occur at pressures 0-10 mm Hg (~80%)
 - Consistent with changes seen in humans in response to increases in ICP
- High variability
 - Could be due to dura not being a load bearing structure, so the structural integrity is not preserved between samples
- High variation in mechanical properties could explain why some astronauts get VIIP whereas others do not
- Axial orientation of the collagen fibers and a lack of circumferential cross-fibers could lead to significant circumferential distension of the dura during increases in ICP
 - Remodeling would occur to lessen the tension and would result in the kink seen in astronauts with VIIP

Including these observations into computational models of the ONS will help improve their accuracy and enable prediction of possible risk factors of VIIP.

Funding: NASA grant number NNX13AP91G and NSBRI First Award Fellowship Program