Representing Extremes in Agricultural Models

Alex Ruane
NASA Goddard Institute for Space Studies, New York, USA
Snowmass, July 28th, 2015
Extreme events on agricultural systems

- **Driven by climate extremes**
 - Heat waves
 - Floods
 - Wind/hail damage
 - Frosts
 - Water logging
 - All depend on seasonal timing with phenology
 - Many depend on conditions at the start of the season

- **Driven by outbreaks of pests, diseases, weeds**
 - Also largely dependent on climate; particularly temperature, canopy wetness and wind vectors

- **Driven by socio-economic factors**
The Agricultural Model Intercomparison and Improvement Project
Rosenzweig et al., 2013; Global Change Biology

Track 1: Model Improvement and Intercomparison
Track 2: Climate Change Multi-Model Assessment

AgMIP PIs: Cynthia Rosenzweig, Jim Jones, John Antle, Jerry Hatfield
AgMIP Leaders: Climate (Alex Ruane, Sonali McDermid), Crop/Livestock Modeling (Ken Boote, Peter Thorburn), Regional Economics (John Antle, Roberto Valdivia), Global Economics (Keith Wiebe, Hermann Lotze-Campen), IT (Cheryl Porter, Sander Janssen)

Rosenzweig et al., 2013 AgForMet
AgMIP is an international community of ~780 climate scientists, agronomists, economists, and IT experts working to improve assessments of future food security.
The AgMIP Wheat Team compared 30+ wheat models against field trial data from the Hot Serial Cereals experiment in Maricopa, Arizona,

Also examined CIMMYT trials of heat extremes.

Emphasis now on model improvement for heat spike responses, particularly during anthesis.
AgMERRA Historical Climate Data
Ruane et al., 2014; Agricultural and Forest Meteorology

AgMERRA features:
- Improved solar radiation
- Improved precipitation variability
- Fine spatial patterns of rainfall from satellites
- An adjustment to diurnal temperature range
- Relative humidity at Tmax

AgMERRA better captures rainfall distribution and actual sequence of extreme events
Above: Correlations between NASS County-level production and that simulated by pDSSAT using CFSR (left) and AgCFSR (right) climate data (from Glotter et al., in preparation)

Below: Probability of detecting extreme events. Tan bar shows fraction of US maize production experiencing one of 5 worst years in NASS data, each colored bar is the production from the same counties that is simulated as being in one worst 5 years (Glotter et al.)
All C3MP Submitted Sites and Major Croplands (Percentage Area)

Green = fractional crop land area data from Monfreda et al. (2008)

From McDermid et al., 2015

Now over 1100 simulation sets
>50 countries
16 crop species; 18 crop models
Driest and warmest years most sensitive to changes in rainfall and temperature

Response of 126 C3MP Maize Sites to:

ΔP

[CO$_2$] = 360ppm

ΔT

Warmest

Driest

All Years

Wettest

Coolest

Yield Change (% of baseline mean)

Ruane et al., in prep
Response of 126 C3MP Maize Sites to:

\([\text{CO}_2]\) \[\Delta T\] \[\Delta P = 0\%\]

Warmest, Driest, All Years, Wettest, Coolest

Driest and warmest years most sensitive to changes in [CO$_2$] and temperature

Ruane et al., in prep
By ranking all C3MP rain-fed sites according to warmest and wettest years from 1980-2010, we can see basic patterns of response to extremes.

a) Maize (126)

b) Spring Wheat (53)

c) Rice (48)

d) Peanut (16)
Variability focuses on 2030s decade

2030s Precipitation Extremes

Diourbel, Senegal probabilistic projections to 2050s factor in mean changes and internal variability

Initial investigations show that extreme events embedded in mean climate change will have strong impact on potential outcomes and adaptation strategies

(work done in collaboration with Arthur Greene and James Chryssanthacopoulos)
UK-US Taskforce on Extreme Weather and Global Food System Resilience (from Joshua Elliott et al.)

- US maize, 1-in-200 year event ~25% worse in near-term even as mean is stable or even increasing – tendency toward more extremes

Lloyd’s of London Report – Food System Shock (from Molly Jahn et al.)

- Generated a scenario with multiple, simultaneous bread basket impacts
- Worldwide reduction of rice, maize, and soybean production (-7%, -10%, -11%)
- Socioeconomic implications: huge increase in rice prices, large losses in stock markets, riots, terrorism, and other outcomes
- Calls for better models of response to food system shocks
Other projects of note:

- **AgMIP Pests and Diseases** – Launched in February, 2015; examining specific species outbreaks as well as generic approach with 8 types of plant damage.

- **MODEXTREME** – Comparing against observations of extreme events to improve models (particularly CropSyst and WOFOST for Europe).
AgMIP Coordinated Regional and Global Assessment
Coordinated Global and Regional Multi-Model Assessments

RRTs – Farming systems biophysical and socioeconomic models

RCPs

SSPs

RAPs

GGCMI -- High-resolution gridded crop modeling for gap-filling and aggregation in each region

Global Economics – Model analysis of world and regional prices

Production systems and regional economics respond to price changes
AgMIP and related projects are conducting several activities to understand and improve crop model response to extreme events.

This involves crop model studies as well as the generation of climate datasets and scenarios more capable of capturing extremes.

Models are typically less responsive to extreme events than we observe, and miss several forms of extreme events.

Models also can capture interactive effects between climate change and climate extremes.

Additional work is needed to understand response of markets and economic systems to food shocks.

AgMIP is planning a Coordinated Global and Regional Assessment of Climate Change Impacts on Agricultural Production and Food Security with an aim to inform the IPCC Sixth Assessment Report.
Thanks!

Contact me: alexander.c.ruane@nasa.gov

Please visit www.agmip.org for more information