Development of a Sodium LIDAR for Spaceborne Missions

Measurement Techniques in Solar and Space Physics (MTSSP)
April 20-24 2015
NCAR Center Green Campus, Boulder, CO

Anthony W. Yu, Michael A. Krainak, Diego Janches, Sarah L. Jones, Branimir Blagojevic, Jeffrey Chen

NASA Goddard Space Flight Center
April 21, 2015
Sodium lidar instrument

AGENDA

- Heliophysics in the Earth mesosphere with spectroscopy of sodium
- Key candidate technology for space-based sodium lidar:
 - Laser transmitter: Self-Raman Nd:YVO$_4$
 - Laser spectroscopic technique: leverage from ASCENDS
 - Laser receiver: filter
 - Laser receiver: single photon detectors
Heliophysics with sodium lidar

- Ablation from meteors is believed to be the chief source of metals such as Na, Mg, K, Fe, and Ca in the middle atmosphere.

- Metal (e.g. sodium) fluorescence lidar can provide temperature measurements in the Earth's atmosphere mesopause region (75 - 115 km).

- This will enable scientists to delineate and understand the middle and upper atmosphere chemistry, structure and dynamics, especially the impact of gravity waves – the parameterization of which is a fundamental issue in current atmospheric modeling for climate and meteorology.

- In summary, this helps to delineate and separate solar vs. Earth induced heat causing change in the Earth atmospheric temperature.
Atmospheric Sodium spectra
Temperature and wind effects

- The D2 resonance line of atomic sodium is 589.159 nm
- The D2 resonance line of Na is a Doppler broadened doublet composed of six hyperfine lines as shown below.

- The Doppler broadening of the lines is a function of temperature and the ratio of the D2a peak to the value at the minimum between the peaks is a very sensitive function of temperature.
- The wind speed may be inferred from the Doppler shift induced to the structure of the line as shown above.
Sodium lidar instrument

AGENDA

• Heliophysics in the Earth mesosphere with spectroscopy of sodium
• Key candidate technology for space-based sodium lidar:
 – Laser transmitter: Self-Raman Nd:YVO₄
 – Laser spectroscopic technique: leverage from ASCENDS
 – Laser receiver: filter
 – Laser receiver: single photon detectors
Sodium space-based lidar - leverage

ICESat2/ATLAS laser
ICESat = Ice Cloud & land Elevation Satellite
ATLAS = Advanced Topographic Laser Altimeter System

2017 launch

9W @ 532 nm Nd:YVO₄ laser
built by Fibertek Inc.

CALIPSO/CALIOP laser
CALIPSO = Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations
CALIOP = Cloud-Aerosol Lidar with Orthogonal Polarization

2006 launch

2.2 W @ 532 nm, 2.2W @1064 nm
Nd:YAG laser built by Fibertek Inc

Self-Raman Nd:YVO₄ Laser for Sodium Spectroscopy

LD – Laser Diode
TSLD – Tunable Seed Laser Diode
MML – Mode Matching Lens
HR – High Reflective Mirror
OC – Output Coupler
AOQS – Acousto-Optic Q-Switch

885 nm LD
1066 nm TSLD
589 nm Output

MML
HR
c-Nd:YVO₄
AOQS
LBO or KTP
Delivery Fiber & MML

LD – Laser Diode
TSLD – Tunable Seed Laser Diode
MML – Mode Matching Lens
HR – High Reflective Mirror
OC – Output Coupler
AOQS – Acousto-Optic Q-Switch
c-Nd:YVO₄ – c-cut Neodymium doped yttrium orthovanadate crystal
LBO – Lithium Triborate
KTP - Potassium Titanyl Phosphate
Nd:YVO4 Self-Raman laser
NASA-GSFC breadboard

LD on Water Chilled Heat Sink

LD – Laser Diode
MML – Mode Matching Lens
HR – High Reflective Mirror
OC – Output Coupler
AOQS – Acousto-Optic Q-Switch
c-Nd:YVO4 – c-cut Neodymium doped yttrium orthovanadate crystal
KTP – Potassium Titanyl Phosphate
TEC – Thermoelectric Cooler

0.5 W at 589 nm

From LD

4/21/2015
MTSSP 2015, Boulder CO
Laser for Sodium Spectroscopy
Tuning vanadate

Fig. 3 The tuning curves of c-cut Nd:Gd$_{0.7}$Y$_{0.3}$VO$_4$, Nd:YVO$_4$ and Nd:GdVO$_4$ lasers

1066 nm External cavity laser (ECL) – Tunable injection seeder

Tunable external cavity seed laser

External Cavity Seed Laser Spectra
Sodium line (lamp) calibration source
Laser spectroscopy of sodium vapor

- Performed real-time experimental spectroscopy of sodium vapor (in a closed cell heated to 110°C) using a frequency-doubled (1178 nm to 589 nm) Distributed FeedBack (DFB) tunable diode laser.
- The laser is tuned in real-time by modulating the electrical current input to the laser.
- The spectra is replicated because the current amplitude is increased and decreased by a sinusoidal input electrical waveform.
Sodium lidar instrument

AGENDA

• Heliophysics in the Earth mesosphere with spectroscopy of sodium

• Key candidate technology for space-based sodium lidar:
 – Laser transmitter: Self-Raman Nd:YVO$_4$
 – Laser spectroscopic technique: leverage from ASCENDS
 – Laser receiver: filter
 – Laser receiver: single photon detectors
Self-Raman Nd:YVO4 laser spectra (unseeded)

NASA-GSFC breadboard
Sodium lidar instrument - leverage Laser Spectrometer for ASCENDS Mission

Measures:
- CO2 tropospheric column
- O2 tropospheric column
- Cloud backscattering profile

ASCENDS = Active Sensing of Carbon Emissions over Nights, Days and Seasons 2022 launch

Clouds and aerosol: $\lambda \sim 1064$ nm

~ 400 km Sun sync orbit
- CO2 at 1570 nm
- O2/pressure at 765 nm
- Altimetry & atm scattering profile from CO2 signal
Sodium lidar leverage from ASCENDS Mission
Time/wavelength multiplexing
using electrically tunable DFB laser and modulator
Airborne instrument retrievals of CO2 absorption line
- August 4, 2009

- Absorption increases with altitude
- Smooth line shapes at all altitudes!

- Black dots - sampled line shape from lidar
- Typ. 60 sec ave time

- Red curves - best fit line shapes (based on HITRAN) from retrieval process
AGENDA

• Heliophysics in the Earth mesosphere with spectroscopy of sodium

• Key candidate technology for space-based sodium lidar:
 – Laser transmitter: Self-Raman Nd:YVO$_4$
 – Laser spectroscopic technique: leverage from ASCENDS
 – Laser receiver: filter
 – Laser receiver: single photon detectors
Sodium lidar leverage from ICESat/GLAS Mission

ICESat/GLAS Etalon Assembly

Also considering sodium vapor Faraday filter

Quad Detector

From LBSM

Fiber Input Port

G10 Spacers for thermal isolation

To Lidar Box
Sodium lidar instrument

AGENDA

• Heliophysics in the Earth mesosphere with spectroscopy of sodium
• Key candidate technology for space-based sodium lidar:
 – Laser transmitter: Self-Raman Nd:YVO$_4$
 – Laser spectroscopic technique: leverage from ASCENDS
 – Laser receiver: filter
 – Laser receiver: single photon detectors
Sodium lidar leverage from ICESat/GLAS Mission

ICESat/GLAS Single Photon Counting Module (SPCM)

- 0.17 mm diameter active area
- >65% QE at 532 nm
- >13e6/s max. count rate
- < 1.5% afterpulsing (500ns)
- <500/s dark counts
- 280g (electronics with header)
- 2.1 W (module only)
- 4.8 W (with power supply)
Sodium lidar instrument

SUMMARY

• NASA-GSFC is exploring concepts for a heliophysics mission using spectroscopy of sodium in the Earth mesosphere

• We have identified key candidate technology for space-based sodium lidar:
 – Laser transmitter: Self-Raman Nd:YVO$_4$
 – Laser spectroscopic technique: leverage from ASCENDS
 – Laser receiver: filter
 – Laser receiver: single photon detectors

• We have proposed (to NASA Heliophysics) development of a ground-based lidar using space-flight pre-cursor components to evolve to a space-based mission.