Long-term Cryogenic Propellant Storage for the TOPS Mission

GSFC: Shuvo Mustafi, John Francis, Xiaoyi Li, Lloyd Purves, Hudson DeLee, Sara Riall
Dan McGuinness, Dewey Willis, Conor Nixon
MSFC: Matt Devine, Ali Hedayat

Motivation
- Liquid Hydrogen (LH2) and Liquid Oxygen (LO2) provide the highest specific impulse of any practical chemical propulsion system.
- NASA is working on several passive, active, and fluid conditioning strategies for long duration in-space storage of cryogenic propellants.
- Subcooling liquid hydrogen prior to launch will triple the in-space vent-free hold time without adding any significant launched mass.
- TRL Increase in Launchpad Cryogen Subcooling Heat Exchanger Hardware.

Thermodynamics
- Isobaric Subcooling (N=0): Removing energy by reducing temperature while keeping pressure constant – the proposed approach.
- Isothermal Subcooling (N=1): Pressurizing while keeping temperature constant – performed prior to most launches to prevent cavitation.
- Condensation (N=2): Removing energy following the liquid–vapor saturation line – enables smaller tanks (K=3) or more propellant in same tank (proposed for Shuttle).

TOPS Design Study Results
- TOPS that is propelled by LH2+LO2 saves 43% in launched mass over TOPS that is propelled by MMH+NTO
- TOPS (with the 25% dry mass contingency) can be launched on an Atlas V 551 with a 8% launch mass margin.
- This mission does not close on any Atlas V vehicle if a standard hypergolic propulsion option is used.
- A LH2+LO2 cryogenic propelled TOPS mission could fit comfortably as a New Frontiers mission.
- Confirmed the basic viability and value of the LH2+LO2 cryo propulsion system.
- Provided a much better understanding of how to incorporate this kind of LH2+LO2 cryo propulsion into an actual mission.
- Generated a number of promising approaches for how the cryo propulsion could be further improved in terms of Isp, mass, envelope, thermal control, and required electrical power.
- Efforts are underway to further reduce the TOPS expected dry mass to fit in even smaller launch vehicles without science reduction.

TOPS Configurations

Subcooling Heat Exchanger Development

Experiment Results

Future Work

Subcooling Systems

TOPS Launch Vehicle Mass

- LH2+LO2 propulsion system for planetary science missions will significantly enable or enhance many planetary science missions.
- Opens up new opportunities to explore outer planets and their moons by orbiting, landing and/or sample return, potentially without the necessity of proper planetary alignments for gravity assists.
- Increased science in the near term as well as providing a cost-effective, safe and clean technique for exploration of our solar system.

Acknowledgements:
This study was made possible by the GSFC FY 2013 + 2014 IRAD
Contact: shuvo.mustafi@nasa.gov
301-286-7436