Motivation

- Liquid Hydrogen (LH2) and Liquid Oxygen (LO2) provide the highest specific impulse of any practical chemical propulsion system.
- NASA is working on several passive, active, and fluid conditioning strategies for long duration in-space storage of cryogenic propellants.
- Subcooling liquid hydrogen prior to launch will triple the in-space vent-free hold time without adding any significant launched mass.
- TRL Increase in Launchpad Cryogen Subcooling Heat Exchanger Hardware.

Thermodynamics

- Isobaric Subcooling (N=α): Removing energy by reducing temperature while keeping pressure constant – the proposed approach.
- Isothermal Subcooling (N=ax): Pressurizing while keeping temperature constant – performed prior to most launches to prevent cavitation.
- Densification (N=αd): Removing energy following the liquid-vapor saturation line – enables smaller tanks (X=3) or more propellant in same tank (proposed for Shuttle).

TOPS Design Study Results

- TOPS that is propelled by LH2+LO2 saves 43% in launched mass over TOPS that is propelled by MMH+NTO.
- TOPS (with the 25% dry mass contingency) can be launched on an Atlas V 551 with a 8% launch mass margin.
- This mission does not close on any Atlas V vehicle if a standard hypergolic propulsion option is used.
- A LH2+LO2 cryogenic propelled TOPS mission could fit comfortably as a New Frontiers mission.
- Confirmed the basic viability and value of the LH2+LO2 cryo propulsion system.
- Provided a much better understanding of how to incorporate this kind of LH2+LO2 cryo propulsion into an actual mission.
- Generated a number of promising approaches for how the cryo propulsion could be further improved in terms of I_sp, mass, envelope, thermal control, and required electrical power.
- Efforts are underway to further reduce the TOPS expected dry mass to fit in even smaller launch vehicles without science reduction.

Subcooling Heat Exchanger Development

Experiment Results

Future Work

- LH2+LO2 propulsion system for planetary science missions will significantly enable or enhance many planetary science missions.
- Opens up new opportunities to explore outer planets and their moons by orbiting, landing and/or sample return, potentially without the necessity of proper planetary alignments for gravity assists.
- Increased science in the near term as well as providing a cost-effective, safe and clean technique for exploration of our solar system.

Acknowledgements:

This study was made possible by the GSFC FY.2013 + 2014 IRAD

Contact:

shuvo.mustafi@nasa.gov

301-286-7436