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Motivation

Liquid Hydrogen (LH2) and Liquid Oxygen (LOZ2) provide the highest specific impulse
of any practical chemical propulsion system. — Highest payload mass fraction.

*NASA is working on several passive, active, and fluid conditioning strategies for long
duration in-space storage of cryogenic propellants.

«Subcooling liquid hydrogen prior to launch will triple the in-space vent-free hold time
without adding any significant launched mass.

*Mission Design Laboratory (MDL) study of a representative mission to Titan: Titan
Orbiter Polar Surveyor (TOPS).

*TRL Increase in Launchpad Cryogen Subcooling Heat Exchanger Hardware.

Thermodynamics
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Titan Orbiter Polar Surveyor (TOPS)
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TOPS Launch Vehicle Mass

TOPS Launched Mass - Various Configurations
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TOPS Design Study Results

* TOPS that Is propelled by LH2+LO2 saves 43% in launched
mass over TOPS that is propelled by MMH+NTO

* TOPS (with the 25% dry mass contingency) can be launched
on an Atlas V 551 with a 8% launch mass margin.

*This mission does not close on any Atlas V vehicle If a
standard hypergolic propulsion option iIs used.

A LH2+LO2 cryogenic propelled TOPS mission could fit
comfortably as a New Frontiers mission.

« Confirmed the basic viability and value of the LH2+LO2 cryo
propulsion system.

*Provided a much better understanding of how to incorporate
this kind of LH2+LO2 cryo propulsion into an actual mission.

* Generated a number of promising approaches for how the cryo
propulsion could be further improved in terms of I, mass,
envelope, thermal control, and required electrical power.

 Efforts are underway to further reduce the TOPS expected dry
mass to fit in even smaller launch vehicles without science
reduction.

TOPS Configurations

Design 1

Design 3

Subcooling Systems
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Thermodynamic Cryogen Subcooler

Subcooling Heat Exchanger Development

Heat Transfer Coefficient Vs. Flow Quality

for various Reynolds Number vertical up-flows of two-phase helium

Experiment Results

Data used to design Subcooling Hardware

Pressure Drop Gradient Vs. Flow Quality

for various Reynolds Number vertical up-flows of two-phase helium
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Planetary Science : TRL 5

Planetary Science : TRL 6

Dryout Heat Flux for the Pre-Heater [W/m?]

Dryout Heat Flux for the Pre-Heater Vs Reynolds Number
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Planetary Science : TRL 9

LLH2+L.O2 propulsion system for planetary science missions will significantly enable or enhance many planetary

science missions.

*Opens up new opportunities to explore outer planets and their moons by orbiting, landing and/or sample return,
potentially without the necessity of proper planetary alignments for gravity assists.
Increased science in the near term as well as providing a cost-effective, safe and clean technique for exploration of

our solar system.
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