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A Cloud Regime (CR) approach is used to study aerosol-cloud-precipitation relationships.

10 years of MODIS Terra-Aqua C5.1 daily joint (2D) histograms of Cloud Top pressure (CTP) vs Cloud Optical Thickness (COT) and Cloud Effective Radius (CER, liquid and ice
phase) vs COT are used to derived global CRs using clustering analysis.

We composite CR properties, namely COT, CTP, Cloud Fraction (CF), and CER, as well as TRMM precipitation.

The Al (= AOD x Angstrom exponent) parameter from MODIS, thought to correlate better with CCN than AOD, is used to examine relationships between aerosols and clouds.
The seasonal Al distribution for each 1°x1° gridcell is broken into vigintiles (5% increments). High and low Al are defined as the highest and lowest Al quartile, respectively.
TRMM Multi satellite Precipitation Analysis TMPA-3B42 rainfall is composited for each CR, and separately for each Al vigintile.

MAIN FINDINGS

We find that ice- and liquid-dominated regimes have different characteristics under high and low aerosol loadings using two different types of MODIS cloud regimes.
There are clear signals of precipitation increase from low to high Al for ice-dominated CRs over land, which is consistent with the hypothesized aerosol-driven convective

invigoration. 1" and 2" aerosol indirect effect appear for liquid dominated CRs.
We suggest that microCRs may be a better basis for studying cloud-aerosol interactions rather than dynamical CRs.

The MODIS cloud regimes Precipitation vs. Al per CR ( 50°S to 50°'N )

[Microphysical reglmels] First, we calculated a seasonal cumulative
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The MODIS microphysical CRs (cluster centroids) derived from clustering separated into those of primarily liquid and primarily ice phase.
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m U _ The arrow indicates the direction of change (up for increase,
down for decrease) when moving to high aerosol (3Q) conditions.
N Red arrows indicate changes consistent with the invigoration
hypothesis, while blue arrows changes consistent with 15t and 21
0 indirect effects in liquid clouds. No arrows indicate either

statistically insignificant changes, or results that are inconsistent
among the members of the CR group. For CR10 and CR8, we do
not attempt to categorize the change, but rather only document
its direction (increase for all cloud properties under heavier
aerosol loading). We can see that invigoration can be better
discerned for ice-dominated CRs over land. 1st and 2nd indirect
nd indirect effect €ffects can be seen in liquid CRs. /

Geographical distribution Of each regime 's multi-annual RFO. red arrow: consistent with invigoration; blue arrow: consistent with 15t and




