Planetary Science with Balloon-Borne Telescopes

- Tibor Kremic (NASA GRC)
- Karl Hibbitts (APL)
- Andy Cheng (APL)
- Eliot Young (SWRI)
Outline

• Why a balloon-borne observatory for Planetary Science
 • Advantages and driving features

• BOPPS Summary

• What’s Next

Photo from BOPPS Onboard Camera
Why Balloons for Planetary Science

- Enables observations not possible from the ground or aircraft (mid IR, NUV) - Unique

- Ultra-Long Duration Balloon (ULDB) flights would enable uninterrupted observation campaigns for weeks if not months – Unique

- Rapid Response – Unique to balloon and ground

- Allows high value observing time at relatively low cost – Advantage

- Engage science community in frequent new missions and broad science, especially good for early career stages – Unique

- Technology Maturation (near space and recovered) – Advantage
Why Balloons for Planetary Science

- Broad application
- Observing in NUV through IR
- Temporal Science

<table>
<thead>
<tr>
<th>Category</th>
<th>Total # of DS “Important Questions”</th>
<th># Answered or significantly addressed</th>
<th>% Addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Bodies</td>
<td>23</td>
<td>10</td>
<td>43%</td>
</tr>
<tr>
<td>Inner Planets</td>
<td>39</td>
<td>11</td>
<td>28%</td>
</tr>
<tr>
<td>Major Planets</td>
<td>39</td>
<td>6</td>
<td>15%</td>
</tr>
<tr>
<td>Icy Satellites</td>
<td>75</td>
<td>12</td>
<td>16%</td>
</tr>
<tr>
<td>Mars</td>
<td>48</td>
<td>3</td>
<td>6%</td>
</tr>
<tr>
<td>Total</td>
<td>194</td>
<td>42</td>
<td>21%</td>
</tr>
</tbody>
</table>
Driving Features

Significant Science is Achievable with Modest System

NASA GRC

[Graph showing science capture rates for different distances: 0.5m, 1m, 1.5m, 2m, >2.5m.]

[Bar graph showing mission duration capture rates for >1 Day, >1 Week, >15 Days, >30 Days, >60 Days.]

[Pie chart showing mission capture rates for different spectral regions: NUV (300-400nm), Visible (400-750nm), NIR (750nm-1μm), SWIR (1-2.5μm), Mid IR (2.5-5μm), Thermal IR (5-12+μm).]
The Balloon Observation Platform for Planetary Science (BOPPS) Mission and Results
BOPPS Objectives / Team

- Develop and demonstrate gondola and payload systems for a balloon-borne platform
 - IR imaging of Oort Cloud Comet
 - Demonstration of Fine Steering Mirror (FSM) for obtaining sub-arcsec pointing stability
- Achieve high-value planetary science objectives
 - Measure CO$_2$ and H$_2$O in an Oort Cloud comet
 - Observe other high-value targets as available

- Team
 - Project management, gondola, and integration - APL
 - BIRC payload - APL; UVVis payload - SwRI
 - Program Management and support - GRC
Oort Cloud and Kuiper Belt

- Two comet reservoirs, Kuiper Belt and Oort Cloud
- Oort Cloud Comet ISON in 2013, the BRRISON target
- Oort Cloud Comets as targets in 2014
BOPPS Gondola Description

Estimated MEV Mass

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>4134 lbs.</td>
</tr>
<tr>
<td>LN2</td>
<td>178 lbs.</td>
</tr>
<tr>
<td>Ballast</td>
<td>750 lbs.</td>
</tr>
<tr>
<td>Total Wet</td>
<td>5062 lbs.</td>
</tr>
</tbody>
</table>

Dry mass includes 345 lbs. of CSBF equipment (CIP/MIP, ballast hopper, science stack, live video transmitter with radiator plate, antennas & harness)
BIRC Instrument Overview

- BIRC is a multispectral IR imager with cryogenic HgCdTe detector
- Cooled filter wheel and relay optics
- Filters at
 - 2.47 µm
 - 2.70 µm
 - 2.85 µm
 - 3.05 µm
 - 3.20 µm
 - 4.00 µm
 - 4.27 µm
 - 4.60 µm
 - R band (600 – 800 nm)
- FOV 3 arcmin
- 1.16 arcsec/pixel plate scale with 18 µm pixel pitch
- 12 bit images
UVVis Instrument Overview

- **Science channel**
 - CCD camera with filter wheel
 - 4 bandpass filters (300 – 450 nm)
 - Broad band (< 300 – 600 nm)
 - Frame format 1024x1024 with optional EMCCD
 - AR coated window
 - Plate scale 0.19 arcsec/pixel with 13 µm pixel pitch

- **Guide channel**
 - Fast framing CMOS imager
 - 600 – 850 nm broad band
 - sCMOS detector with image format 2560x2160
 - Plate scale 0.096 arcsec/pixel with 6.5 µm pixel pitch
 - Controls a fine steering mirror for fine image stabilization to ~ 0.1 arcsec

- **Inset fold mirror**
 - Movable into the telescope light beam
 - Divert light from telescope into UVVis optic
 - Open lets light reach BIRC instrument
BOPPS Pointing

- **Pointing with FSM**
 - Stabilization tests conducted with/without BIRC cryocooler operating
 - Performed fine image motion corrections, <5 Hz
 - RMS pointing errors were reduced to 280 & 165 mas (AZ and EL) with the cryocooler ON
 - RMS was **33.3 & 58.1 mas** with the cryocooler OFF

- **Coarse Pointing**
 - Achieved 0.5 arcsec RMS stability

Pointing performance exceeded mission goals
BIRC Observations

<table>
<thead>
<tr>
<th>Target</th>
<th>r_H [AU]</th>
<th>δ [AU]</th>
<th>Phase [deg.]</th>
<th>Calibration star (type) mag</th>
<th>Detections [band center in μm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siding Spring C/2013 A1</td>
<td>1.46</td>
<td>1.12</td>
<td>43</td>
<td>HD163761 (A0V) V=6.69</td>
<td>R, 2.7, 2.47, 4.0</td>
</tr>
<tr>
<td>Jacques C/2014 E2</td>
<td>1.72</td>
<td>1.15</td>
<td>34</td>
<td>HD196724 (A0V) V=4.82</td>
<td>R, 2.7, 2.47, 3.05, 3.2, 2.85, 4.0, 4.27, 4.6</td>
</tr>
<tr>
<td>1 Ceres</td>
<td>2.75</td>
<td>3.37</td>
<td>15</td>
<td>HD133772 (A0V) V=7.47</td>
<td>R, 2.7, 2.47, 3.05, 3.2</td>
</tr>
</tbody>
</table>

- Siding Spring and Ceres were twilight targets; Jacques was a night time target
BOPPS Accomplishments

Demonstrated planetary science applicability of balloons:

- Unique science observations
 - First observations of 2.7 µ and 4.27 µ fluxes from an Oort Cloud comet revealed cool, silicate dust population
 - First observation of 2.7 µ flux from Ceres to characterize water / hydroxyl infrared absorption
 - Measured water production of comet Siding Spring
- Exceeded goals for sub-arcsecond pointing stability
 - Coarse pointing: exceeded goal of 1 arcsecond
 - Fine-steering pointing: exceeded goal of 0.1 arcsecond
- Successful Secondary Payload
NEXT STEPS
What’s Next

• Demonstrated that desired planetary decadal science can be achieved from balloon-based platforms

• Platform offers low cost approach to science - offering more mission opportunities to take science measurements, flight experience, technology maturation...

• Well suited to competing missions / science
 • Broad applicability

• Competed science is the approach for future
What’s Next

• Continue to define a platform optimized for planetary science – Gondola for High Altitude Planetary Science (GHAPS)
 • 1m OTA, Course pointing <1 arcsec, Light weighted, Modular, Robust
 • Working to make available for first flight in 2019

• BOPPS was successfully recovered
 • Hardware would be available for re-flight

• BOPPS instruments can be leveraged

• Interested in discussing potential collaborations