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MMS Mission Overview
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Heliophysics Objective — observe geomagnetic reconnection
Four observatories that form a tetrahedron near apogee 
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ACS Hardware
2 Digitial Sun Sensors
1 Star Sensor (4 Camera Heads)
1 Acceleration Measurement System
4 Axial Hydrazine Thrusters (1 lb)
8 Radial Hydrazine Thrusters (4 lb)
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Once in science mission orbits, the four 0.12-km diameter 
observatories plan to form a tetrahedron with as little as 4-km 
of separation between spacecraft.

The stated operational goal of maneuvering the fleet is no more 
often than once every two weeks (on average) 
Derived maneuvering accuracy requirement levied on the ACS

Performance Requirements

4

Figure 1. MMS Observatory (Stowed / Fully-Deployed)

accurate spatial and temporal formation must be balanced against the logistical constraints of ex-
ecuting overly-frequent maneuvers on a fleet of spacecraft. These two considerations make for an
extremely challenging orbit design problem.1, 2

Maneuver Size Error Allocation (3�)

(m/sec) Magnitude Direction?

0 – 0.05 5 mm/sec 40� ! 5�

0.05 – 0.10 1% 5� ! 1.5�

0.10 < 1% 1.5�

? (! indicates linear decrease vs. size)

With a stated operational goal of maneuvering the fleet no
more often than once every two weeks (on average), MMS
flight dynamics specialists derived the formation maintenance
maneuver execution requirements shown to the right.

ATTITUDE, RATE, AND ACCELERATION

Star Sensor

Figure 2. DTU µASC Image (OBS 3, CHU B)

The µASC Star Tracker System
(STS), provided by the Technical
University of Denmark, consists
of internally redundant electronics
housed within a single enclosure
that interfaces with four Charge-
Coupled Device camera head units.
The STS provides time-stamped at-
titude quaternion data packets at a
4 Hz telemetry rate. It has a 3� full
performance transverse and bore-
sight axis accuracy of 60 arcsec and
200 arcsec, respectively. The STS
has a spin rate capability of up to
4 RPM. Figure 2 shows a 752⇥580
pixel image taken April 27, 2015 by
Observatory 3 (MMS-3) using STS camera head unit B.

Multiplicative Extended Kalman Filter (MEKF)

Attitude and angular rate of the spacecraft with respect to the ECI J2000 inertially fixed reference
frame are determined on-board by processing the four quaternion solutions produced by each star
sensor camera-head unit (CHU) at 4 Hz. The CHU measurements are transformed into the com-
mon spacecraft body-fixed frame and then combined in a Multiplicative Extended Kalman Filter

2
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Attitude and rate are derived 
from the μASC Star Tracker 
System, provided by the 
Technical University of Denmark

Four camera head units (CHU)
4 Hz update rate
Measurements combined in a 
Multiplicative Extended Kalman 
Filter (MEKF) 

Attitude and Rate Estimation
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Image from MMS-3, CHU-B

MEKF Error State Dynamics

↵̇
˙�!

�
=

"
�!̂⇥ I
0 I�1

h
(I!̂)⇥ � !̂⇥I

i
# 

↵
�!

�
+


0

I�1

�
u+w

without a gyro, knowledge of (an “effective” rigid-body) 
inertia tensor is required
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Acceleration Measurement System (AMS), 
manufactured by ZIN Technologies

Acceleration Measurement System

6

three orthogonal Honeywell QA3000 
accelerometers
100 kHz analog-to-digital sampling
dynamic range of greater than ±25,000 μg
resolution of less than 1 μg
short-term (1σ) bias stability over a twelve 
hour period of better than 1 μg
effective bandwidth of 250 Hz 
1 KHz (down-sampled) acceleration integrated 
(corrected and summed) to produce an 
incremental velocity-change output at 4 Hz
low-pass bias estimation filter
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Modeled as a proof-mass connected to a rigid-body by tri-axial springs, 
device acceleration relative to a body-fixed origin is

Introducing the base-body’s center-of mass (rc) yields a truth model

where ft is the acceleration due to body-fixed thrusters.

Acceleration measurement model assumes n uni-axial measurements 
(along un) corrupted by bias, noise and scale factor errors

Accelerometer Model

a (small) displacement ⇠ relative to its non-accelerating (rest) state. This conceptual model is suffi-
cient for most applications regardless of the actual device’s internal construction (e.g. cantilevered
beam, electro-magnetic re-balance loop, etc.).

Given the accelerometer’s proof-mass position R
p

with respect to an inertially-fixed origin is
equivalent to the location of a body-fixed origin’s inertial position (R

o

) summed with a local vector
(r

d

) that places the device’s in body-fixed coordinates, plus the proof-mass’ deflection from its
rest-state. This relationship is expressed as the equation
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(13)

where the symbol A is used generally in this paper to denote an attitude direction-cosine matrix,
and in this specific instance is the transformation from the body-fixed to inertial frame. Twice
differentiating Eq. (13) with respect to time produces the kinematic acceleration of the device-mass
m
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with respect to the inertial frame as
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where ! is the angular velocity of the body-fixed frame with respect to the inertial frame, expressed
in body coordinates. Assuming the tiny proof-mass deflections are much smaller than the vector
locating the device in the body-frame, then r

p

⇡ r
d

. If we also neglect structural flexure of the
base-body, then rigidity implies ˙r

d

=

¨r
d

= 0, and the kinematic expression of Eq. (14) reduces
even further. Substituting for the acceleration at the sensor-head into Newton’s second law of motion,
equates the total proof-mass acceleration to the sum of the external forces acting on it as follows
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where a
grav

is the acceleration due to a gravitational field. Eq. (16) also moved r̈
p

= ⇠̈ to the
left-hand side of the equality, and uses Newton’s third law to replace the proof-mass acceleration
⇠̈ with the tri-axial spring-force (c

d

is the damping coefficient of the spring, and k
d

its stiffness).
If the dynamics-of-interest are far enough below the bandwidth of the sensor ( ˙V

o

, ˙

! ⌧ k

d

m

p

), the
accelerometer’s internal response will have damped out ( ˙⇠ ! 0), and the device will produce a
steady-state output
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Note that the only external force the device’s proof-mass experiences is gravity, because it is a
field-effect. All other mechanical disturbances to the system must be transmitted through the base-
body via the tri-axial spring. Prior to launch, resting on a clean-room floor, the accelerometer
“sees” gravity on its output because the base-structure is at rest ( ˙V

o

⇡ 0, unless of course there
is an earthquake or heavy-footed technician nearby). In orbit, the expression for the base-body’s
acceleration with respect to inertial can be obtained by differentiating the linear momentum P of
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the base-body with respect to the inertial frame,
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where r
c

is the position of the base-body’s center-of-mass (CM) expressed in the body-fixed frame,
m is the spacecraft mass, and �v

ṁ

is a relative exhaust velocity of any expelled mass (e.g. thrusters).
Even though a rigid-base was assumed in the derivation of the proof-mass motion, choosing not to
nullify the derivatives of the CM at this point provides a placeholder for multi-body effects such
as fuel-slosh and appendage motion, so they remain intact for now. Applying Newton’s second law
and identifying the mass-expulsion as the body-fixed thruster-force (f

t

), Eq. (19) now takes the form
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Assuming that the accelerometer proof-mass is much smaller than that of the base-body (m
d

⌧ m),
the spring reaction-force k

d

m

⇠ can be ignored without inducing significant error. Finally, combining
Eq. (21) with Eq. (17) yields a complete expression for an accelerometer truth-model
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It is interesting to note the cancellation of the gravitational acceleration terms between the two equa-
tions. In truth, this only holds if the gravitational field is completely uniform. However, with the
semi-major axis of the MMS orbit varying from 1.2–12 Earth radii, the so-called gravity-gradient
effect (defined as the difference in the gravitational field across the spacecraft) is negligible. Specif-
ically, using those inverse-squared distances with a CM-to-sensor displacement (r

cd

) of only one
meter produces a maximum effect of 0.18 µg at perigee and 2 ⇥ 10

�4 µg at apogee—sufficiently
below the threshold of the MMS accelerometer.

Measurement Equation

A discrete-sample at time t
k

of the acceleration from the nth sensor-head, a
n

, is modeled as
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where �
b

is a scale factor error, û is a unit vector along the true sensing axis of the nth sensor
head, b

n

is an intrinsic electro-mechanical bias, and ⌘
n

is sensor noise (possibly non-white). All of
the introduced quantities (�, û, b, ⌘) are both time-varying and functions of temperature. A vector
quantity for the sampled acceleration (a

k

) in the body-fixed frame can be reconstructed from the
n (� 3) measurements using the pseudo-inverse of a user-supplied orthogonality matrix O, which
ideally cancels the true alignment matrix U =
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holds true. In the case of MMS, the number of sensor heads is three (n = 3) and—through ex-
tensive ground calibration and on-orbit temperature control—they are believed to be nearly or-
thogonal. For the sake of simplicity in the explication that follows, it is assumed the scale factor,
non-orthogonality, and alignment errors are essentially zero (although the full effects of the errors
are bounded and included in the subsequent Monte Carlo analysis). With the stated assumptions, U
and O are both the identity matrix I, and Eq. (24) reduces to

a
k

= a
d

+ b + ⌘ (25)

VELOCITY ESTIMATION

The quantity of interest from a formation-maintenance perspective is not the acceleration per
se, but the change in velocity of the spacecraft’s center-of-mass due to thrusting. Analogous to a
rate-integrating-gyro for attitude dynamics, the AMS’s primary function for the mission is to act
as an acceleration-integrating-accelerometer during orbital-adjustments. Combining Eq. (25) with
Eq. (22), transforming to the inertial frame, and integrating over the time-interval (t1, t2) produces
the following relationship
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Evaluating the definite integral, and denoting the integrated thrust as the perturbed velocity of the
spacecraft’s center-of-mass �v
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where the attitude matrix subscripts b1 and b2 refer to the body’s orientation at times t1 and t2 re-
spectively. Delaying the expansion of the definite integral limits to compress terms, we arrive at
an important result. On the left-hand side of the following expression is the true quantity to be
controlled, �v

c

, and on the right an expression for it in terms of ideal integrated sensor measure-
ments and some additional “error” sources that must be removed (estimated/compensated) in order
to achieve precise maneuvering.

�v
c

(t1, t2)| {z }
truth states

=

Z
t2

t1

A
i b

a
k

d⌧

| {z }
measurement

+

⇢
A

i b

!

⇥r
cd

| {z }
centripetal

� A
i b

ṙ
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Methods for estimating the terms of the right-hand side of Eq. (28) will be detailed in the sections
that follow.
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“Effective” integration of the measurement yields

Recognizing that the integrated thrust is the true quantity of 
interest (i.e. the velocity change of the spacecraft’s center-of-
mass), the expression may be rearranged as

The first term on the left-hand side is provided directly from the 
AMS.  The remaining terms must be either corrected by an 
estimated compensation, or tolerated in the performance.

Velocity Estimation

8
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) ûT

n

3

7775
a

d

+

2

6664

b1

b2
...

b
n

3

7775
+

2

6664

⌘1

⌘2
...

⌘
n

3

7775

9
>>>=

>>>;
(24)

holds true. In the case of MMS, the number of sensor heads is three (n = 3) and—through ex-
tensive ground calibration and on-orbit temperature control—they are believed to be nearly or-
thogonal. For the sake of simplicity in the explication that follows, it is assumed the scale factor,
non-orthogonality, and alignment errors are essentially zero (although the full effects of the errors
are bounded and included in the subsequent Monte Carlo analysis). With the stated assumptions, U
and O are both the identity matrix I, and Eq. (24) reduces to
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VELOCITY ESTIMATION

The quantity of interest from a formation-maintenance perspective is not the acceleration per
se, but the change in velocity of the spacecraft’s center-of-mass due to thrusting. Analogous to a
rate-integrating-gyro for attitude dynamics, the AMS’s primary function for the mission is to act
as an acceleration-integrating-accelerometer during orbital-adjustments. Combining Eq. (25) with
Eq. (22), transforming to the inertial frame, and integrating over the time-interval (t1, t2) produces
the following relationship
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Evaluating the definite integral, and denoting the integrated thrust as the perturbed velocity of the
spacecraft’s center-of-mass �v
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where the attitude matrix subscripts b1 and b2 refer to the body’s orientation at times t1 and t2 re-
spectively. Delaying the expansion of the definite integral limits to compress terms, we arrive at
an important result. On the left-hand side of the following expression is the true quantity to be
controlled, �v

c

, and on the right an expression for it in terms of ideal integrated sensor measure-
ments and some additional “error” sources that must be removed (estimated/compensated) in order
to achieve precise maneuvering.
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Methods for estimating the terms of the right-hand side of Eq. (28) will be detailed in the sections
that follow.
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holds true. In the case of MMS, the number of sensor heads is three (n = 3) and—through ex-
tensive ground calibration and on-orbit temperature control—they are believed to be nearly or-
thogonal. For the sake of simplicity in the explication that follows, it is assumed the scale factor,
non-orthogonality, and alignment errors are essentially zero (although the full effects of the errors
are bounded and included in the subsequent Monte Carlo analysis). With the stated assumptions, U
and O are both the identity matrix I, and Eq. (24) reduces to
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VELOCITY ESTIMATION

The quantity of interest from a formation-maintenance perspective is not the acceleration per
se, but the change in velocity of the spacecraft’s center-of-mass due to thrusting. Analogous to a
rate-integrating-gyro for attitude dynamics, the AMS’s primary function for the mission is to act
as an acceleration-integrating-accelerometer during orbital-adjustments. Combining Eq. (25) with
Eq. (22), transforming to the inertial frame, and integrating over the time-interval (t1, t2) produces
the following relationship
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where the attitude matrix subscripts b1 and b2 refer to the body’s orientation at times t1 and t2 re-
spectively. Delaying the expansion of the definite integral limits to compress terms, we arrive at
an important result. On the left-hand side of the following expression is the true quantity to be
controlled, �v

c

, and on the right an expression for it in terms of ideal integrated sensor measure-
ments and some additional “error” sources that must be removed (estimated/compensated) in order
to achieve precise maneuvering.
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Methods for estimating the terms of the right-hand side of Eq. (28) will be detailed in the sections
that follow.
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holds true. In the case of MMS, the number of sensor heads is three (n = 3) and—through ex-
tensive ground calibration and on-orbit temperature control—they are believed to be nearly or-
thogonal. For the sake of simplicity in the explication that follows, it is assumed the scale factor,
non-orthogonality, and alignment errors are essentially zero (although the full effects of the errors
are bounded and included in the subsequent Monte Carlo analysis). With the stated assumptions, U
and O are both the identity matrix I, and Eq. (24) reduces to

a
k

= a
d

+ b + ⌘ (25)

VELOCITY ESTIMATION

The quantity of interest from a formation-maintenance perspective is not the acceleration per
se, but the change in velocity of the spacecraft’s center-of-mass due to thrusting. Analogous to a
rate-integrating-gyro for attitude dynamics, the AMS’s primary function for the mission is to act
as an acceleration-integrating-accelerometer during orbital-adjustments. Combining Eq. (25) with
Eq. (22), transforming to the inertial frame, and integrating over the time-interval (t1, t2) produces
the following relationship
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Evaluating the definite integral, and denoting the integrated thrust as the perturbed velocity of the
spacecraft’s center-of-mass �v

c

(t) the relationship takes the form
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where the attitude matrix subscripts b1 and b2 refer to the body’s orientation at times t1 and t2 re-
spectively. Delaying the expansion of the definite integral limits to compress terms, we arrive at
an important result. On the left-hand side of the following expression is the true quantity to be
controlled, �v

c

, and on the right an expression for it in terms of ideal integrated sensor measure-
ments and some additional “error” sources that must be removed (estimated/compensated) in order
to achieve precise maneuvering.
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Methods for estimating the terms of the right-hand side of Eq. (28) will be detailed in the sections
that follow.
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Discrete approximation to measurement integral with sculling 
correction for frame rotation

two-hundred fifty (1 Khz) acceleration samples produce a single  
4 Hz velocity-increment in the frame of the final (250th) sample

AMS Measurement Corrections

Measurement Integral

The first term on the right-hand side of Eq. (28), the measurement integral, is obtained by sam-
pling the analog accelerometer (e.g. QA 3000) at a sufficiently high rate to capture all the relevant
dynamics of the maneuvering spacecraft. In the case of MMS, the AMS electronics samples well
above 1 kHz, and then applies appropriate decimation, anti-aliasing and noise reduction filters to
deliver a “clean” 1 kHz digital signal. The discrete AMS output has a bandwidth of 250 Hz, and less
than ±5 ppm of gain and/or ±1

� of phase distortion in the pass-band. Since the MMS ACS oper-
ates on a 4 Hz control cycle, the measurement integral contains 250 subsamples that are combined
to generate a single velocity-increment. Outside the AMS, in the ACS flight software, the subin-
terval sample is transformed into the inertial frame, and summed to produce the total maneuver
velocity-change estimate for closed-loop control.

Frame Rotation Compensation Because the summation of the subsamples must occur in a uni-
form reference frame, each subsample is transformed forward in time to what is assumed will be
the frame of the final (k = 250) sample. This transformation is based upon the current estimate
of the spacecraft’s expected attitude motion. The propagation assumes the base-body’s angular rate
estimate !̂(t1) is approximately constant over the full quarter-second sample interval. In the par-
lance of strap-down inertial navigation systems, this type of compensation to the velocity update is
known as a sculling correction.6, 7 (For reference, the dual term applied to gyro measurements for
attitude updates is referred to as a coning correction.)

Recalling the measurement integral term of Eq. (28), its discrete approximation is
Z
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where the attitude matrix update is obtained from an Euler axis/angle parametrization5
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where the Euler axis ê = !̂/k!̂k is a unit vector in the direction of the angular rate ! expressed
in body-fixed coordinates, and the Euler angle � is a function of the time-difference between the
current (kth

) and final (250
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) sample,
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= k!̂k ·�t
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(31)

Recall that ! is the axis of rotation and assumed constant over the sub-interval. It is therefore the
same in all (instantaneous) subsample coordinate frames.

Centripetal Compensation

An estimate for the kinematic effect that results from having the accelerometer mounted with an
offset from the structure’s spin-center (i.e. the center-of-mass) is obtained by replacing the values
in the dynamical terms with current-best-estimates. In the case of the attitude transforms A and the
angular rate !, these estimates come directly from the on-board attitude estimate whose accuracy is
governed by the star sensor measurements and MEKF solution. The only other estimate needed is
the offset of the accelerometer sensor heads from the system’s center-of-mass (r̂
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Measurement Integral

The first term on the right-hand side of Eq. (28), the measurement integral, is obtained by sam-
pling the analog accelerometer (e.g. QA 3000) at a sufficiently high rate to capture all the relevant
dynamics of the maneuvering spacecraft. In the case of MMS, the AMS electronics samples well
above 1 kHz, and then applies appropriate decimation, anti-aliasing and noise reduction filters to
deliver a “clean” 1 kHz digital signal. The discrete AMS output has a bandwidth of 250 Hz, and less
than ±5 ppm of gain and/or ±1

� of phase distortion in the pass-band. Since the MMS ACS oper-
ates on a 4 Hz control cycle, the measurement integral contains 250 subsamples that are combined
to generate a single velocity-increment. Outside the AMS, in the ACS flight software, the subin-
terval sample is transformed into the inertial frame, and summed to produce the total maneuver
velocity-change estimate for closed-loop control.

Frame Rotation Compensation Because the summation of the subsamples must occur in a uni-
form reference frame, each subsample is transformed forward in time to what is assumed will be
the frame of the final (k = 250) sample. This transformation is based upon the current estimate
of the spacecraft’s expected attitude motion. The propagation assumes the base-body’s angular rate
estimate !̂(t1) is approximately constant over the full quarter-second sample interval. In the par-
lance of strap-down inertial navigation systems, this type of compensation to the velocity update is
known as a sculling correction.6, 7 (For reference, the dual term applied to gyro measurements for
attitude updates is referred to as a coning correction.)

Recalling the measurement integral term of Eq. (28), its discrete approximation is
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where the attitude matrix update is obtained from an Euler axis/angle parametrization5
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where the Euler axis ê = !̂/k!̂k is a unit vector in the direction of the angular rate ! expressed
in body-fixed coordinates, and the Euler angle � is a function of the time-difference between the
current (kth

) and final (250

th

) sample,
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(31)

Recall that ! is the axis of rotation and assumed constant over the sub-interval. It is therefore the
same in all (instantaneous) subsample coordinate frames.

Centripetal Compensation

An estimate for the kinematic effect that results from having the accelerometer mounted with an
offset from the structure’s spin-center (i.e. the center-of-mass) is obtained by replacing the values
in the dynamical terms with current-best-estimates. In the case of the attitude transforms A and the
angular rate !, these estimates come directly from the on-board attitude estimate whose accuracy is
governed by the star sensor measurements and MEKF solution. The only other estimate needed is
the offset of the accelerometer sensor heads from the system’s center-of-mass (r̂
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Measurement Integral

The first term on the right-hand side of Eq. (28), the measurement integral, is obtained by sam-
pling the analog accelerometer (e.g. QA 3000) at a sufficiently high rate to capture all the relevant
dynamics of the maneuvering spacecraft. In the case of MMS, the AMS electronics samples well
above 1 kHz, and then applies appropriate decimation, anti-aliasing and noise reduction filters to
deliver a “clean” 1 kHz digital signal. The discrete AMS output has a bandwidth of 250 Hz, and less
than ±5 ppm of gain and/or ±1

� of phase distortion in the pass-band. Since the MMS ACS oper-
ates on a 4 Hz control cycle, the measurement integral contains 250 subsamples that are combined
to generate a single velocity-increment. Outside the AMS, in the ACS flight software, the subin-
terval sample is transformed into the inertial frame, and summed to produce the total maneuver
velocity-change estimate for closed-loop control.

Frame Rotation Compensation Because the summation of the subsamples must occur in a uni-
form reference frame, each subsample is transformed forward in time to what is assumed will be
the frame of the final (k = 250) sample. This transformation is based upon the current estimate
of the spacecraft’s expected attitude motion. The propagation assumes the base-body’s angular rate
estimate !̂(t1) is approximately constant over the full quarter-second sample interval. In the par-
lance of strap-down inertial navigation systems, this type of compensation to the velocity update is
known as a sculling correction.6, 7 (For reference, the dual term applied to gyro measurements for
attitude updates is referred to as a coning correction.)

Recalling the measurement integral term of Eq. (28), its discrete approximation is
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where the attitude matrix update is obtained from an Euler axis/angle parametrization5
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where the Euler axis ê = !̂/k!̂k is a unit vector in the direction of the angular rate ! expressed
in body-fixed coordinates, and the Euler angle � is a function of the time-difference between the
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) and final (250
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(31)

Recall that ! is the axis of rotation and assumed constant over the sub-interval. It is therefore the
same in all (instantaneous) subsample coordinate frames.

Centripetal Compensation

An estimate for the kinematic effect that results from having the accelerometer mounted with an
offset from the structure’s spin-center (i.e. the center-of-mass) is obtained by replacing the values
in the dynamical terms with current-best-estimates. In the case of the attitude transforms A and the
angular rate !, these estimates come directly from the on-board attitude estimate whose accuracy is
governed by the star sensor measurements and MEKF solution. The only other estimate needed is
the offset of the accelerometer sensor heads from the system’s center-of-mass (r̂
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Estimating the kinetic effect of having the accelerometers offset 
from the effective spin-center

Could be an exact correction, over an arbitrarily long time 
interval, but requires:

good rate estimates (despite a rigid-body approximation)
good knowledge of the spacecraft’s center-of-mass (CM)
sensor-head offsets are handled properly
multi-body and structural (flex) dynamics (e.g. CM motion) 
integrates to zero over a sufficiently long duration since it is non-
propulsive
other error sources are small (e.g. non-linearity, scale factor, etc.) 
or well managed (e.g. thermal)

Centripetal Compensation

Measurement Integral

The first term on the right-hand side of Eq. (28), the measurement integral, is obtained by sam-
pling the analog accelerometer (e.g. QA 3000) at a sufficiently high rate to capture all the relevant
dynamics of the maneuvering spacecraft. In the case of MMS, the AMS electronics samples well
above 1 kHz, and then applies appropriate decimation, anti-aliasing and noise reduction filters to
deliver a “clean” 1 kHz digital signal. The discrete AMS output has a bandwidth of 250 Hz, and less
than ±5 ppm of gain and/or ±1

� of phase distortion in the pass-band. Since the MMS ACS oper-
ates on a 4 Hz control cycle, the measurement integral contains 250 subsamples that are combined
to generate a single velocity-increment. Outside the AMS, in the ACS flight software, the subin-
terval sample is transformed into the inertial frame, and summed to produce the total maneuver
velocity-change estimate for closed-loop control.

Frame Rotation Compensation Because the summation of the subsamples must occur in a uni-
form reference frame, each subsample is transformed forward in time to what is assumed will be
the frame of the final (k = 250) sample. This transformation is based upon the current estimate
of the spacecraft’s expected attitude motion. The propagation assumes the base-body’s angular rate
estimate !̂(t1) is approximately constant over the full quarter-second sample interval. In the par-
lance of strap-down inertial navigation systems, this type of compensation to the velocity update is
known as a sculling correction.6, 7 (For reference, the dual term applied to gyro measurements for
attitude updates is referred to as a coning correction.)

Recalling the measurement integral term of Eq. (28), its discrete approximation is
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where the attitude matrix update is obtained from an Euler axis/angle parametrization5
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where the Euler axis ê = !̂/k!̂k is a unit vector in the direction of the angular rate ! expressed
in body-fixed coordinates, and the Euler angle � is a function of the time-difference between the
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) and final (250
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Recall that ! is the axis of rotation and assumed constant over the sub-interval. It is therefore the
same in all (instantaneous) subsample coordinate frames.

Centripetal Compensation

An estimate for the kinematic effect that results from having the accelerometer mounted with an
offset from the structure’s spin-center (i.e. the center-of-mass) is obtained by replacing the values
in the dynamical terms with current-best-estimates. In the case of the attitude transforms A and the
angular rate !, these estimates come directly from the on-board attitude estimate whose accuracy is
governed by the star sensor measurements and MEKF solution. The only other estimate needed is
the offset of the accelerometer sensor heads from the system’s center-of-mass (r̂
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Classic tracker design
time-varying inertial target table 
uploaded prior to each maneuver
incremental-velocity feedback 
from AMS is accumulated in 
inertial space by the ACS
Δv error is projected onto the 
axial and radial thrusters
axial thrust can be continuous

Velocity Controller

11

radial thrust must be pulsed to correspond with the two banks of 
thrusters spinning into inertial alignment (an iterative solver is 
employed to achieve precise pulse-centering)
momentum control is interleaved to maintain pointing-direction, 
spin-rate, and minimal nutation
wire-boom excitation is typically less than 2º out-of-plane and 4º 
in-plane
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Verified system 
performance using 
Monte Carlo methods 
with a high-fidelity 
non-linear time-
domain simulation.  

A 99% confidence 
(1% consumer risk) 
requires zero failures 
to meet performance 
requirement in 3410 
samples.

System Robustness

12
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Open-Loop Flight Performance

13

Divergence is mainly due to 
steady-state thrust knowledge 
error, and transient warm-up
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Verified change in semi-major axis (SMA) using GPS- Enhanced Onboard 
Navigation System (GEONS) which is producing 5-meters (3σ) accuracy. 

Closed-Loop Flight Performance

14

Closed-loop Maneuvers

The best avenue for determining the true closed-loop performance is through post-maneuver orbit
determination. The GSFC developed NAVIGATOR17 Global Positioning System (GPS) and GPS-
Enhanced Onboard Navigation System (GEONS) units are collectively providing autonomous orbit
determination with a record-breaking 5 meters (3�) semi-major axis (SMA) accuracy.18 After the
first few closed-loop formation initialization maneuvers for MMS commissioning, the following
performance has been verified

Maneuver
(DOY)

Obs
ID

Final Target
Magnitude GEONS Solution

Semi-major Axis
�-error

Final
Servo-Error

AMS Bias Estimate
(µg)

mm/s mm/s % target X Y Z

GS-095
(166,167)

1 118.6 -1.14% 1.5 1.25% 114.7 78.9 49.6
2 18.3 -0.57% 1.0 5.73% 94.3 93.9 47.3
3 46.9 -0.73% 1.1 2.27% 75.2 92.5 140.1
4 77.0 0.55% 1.1 1.44% 108.3 96.1 125.1

FI-116
(188)

1 0 — — — 115.3 77.4 49.7
2 4077.5 -0.79% 1.0 0.03% 95.0 94.0 47.5
3 9175.6 -0.26% 0.2 0.00% 76.9 94.3 140.9
4 4452.1 -0.26% 1.2 0.03% 107.2 93.9 125.4

FI-119
(190)

1 0 — — — — — —
2 3511.6 -0.61% 0.8 0.02% 93.7 94.0 47.6
3 4149.7 -0.18% 1.3 0.03% 76.9 94.7 140.8
4 6068.7 -0.27% 1.3 0.02% 106.9 95.5 125.3

While the error in targeted semi-major axis does not equate with controller-error (�v), SMA is
directly linked to the orbital speed (e.g. the vis-viva equation). These early results indicate that the
fleet is maneuvering successfully within the 3� total mission requirements that are an amalgamation
of ACS execution and flight-dynamics planning errors. These results are particularly encouraging
considering the sizes of the GS maneuvers, since high percent-accuracy is more challenging for
small maneuvers. The sample mean µ̄ of these maneuvers is -0.068%, with a sample standard
deviation �̄ of 0.637%. Based on this relatively small sample size of 10 cases, we can state with a
90% confidence that the true standard deviation lies in the range of 0.465–1.048%, with the caveat
that the distribution of maneuver errors is assumed Gaussian. Ultimately, the criteria for a successful
MMS maneuvering-system design will be the length of time for which a high-quality formation can
be preserved—which will be measured in the frequency of corrective maneuvers. This will be
especially evident when the formation moves from its current average separation of approximately
160 km down to as little as 4 km.
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