Heat Capacity and Thermal Conductance Measurements of a Superconducting/Normal Mixed State by Detection of Single 3 eV Photons in a Magnetic Penetration Thermometer

T.R. Stevenson1, M.A. Balvin2, S.R. Bandler2, K.L. Denis1, S.-J. Lee2, P.C. Nagler1,1, S.J. Smith4,2

1 Detector Systems Branch, NASA Goddard Space Flight Center, Greenbelt, MD, USA
2 X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
3 Department of Physics, Brown University, Providence, RI, USA
4 University of Maryland Baltimore County, Baltimore, MD, USA

C and G Measurements

1. Using 3-eV photons from a Blu-ray disc
 - An example data set at 1001 uA and 100 mK (photon number resolved)
 - 405 nm (3.98 eV) photons from a Blu-ray disc outside the crystal
 - Photon pulse width: 0.7 us, repetition rate: 70 kHz
 - 10,000 triggered records at each T

 ![Diagram of MPT operation](https://ntrs.nasa.gov/search.jsp?R=20150018422)

 - A persistent current is trapped in the bias circuit above the Tc of aluminum wirebonds, each sensor's superconducting transition.
 - The inductance of the meander changes as the MoAu film expels or allows entry of flux, and we measure a current proportional to the sensor's magnetic response.
 - MPTs give us a unique avenue to probe superconducting effects in MoAu films.

Measuring C and G

- Free energy difference between superconducting and normal states of MPT
- Continuous noise spectrum of MPT
- A persistent current is trapped in the bias circuit above the Tc of aluminum wirebonds, each sensor's superconducting transition.
- The inductance of the meander changes as the MoAu film expels or allows entry of flux, and we measure a current proportional to the sensor's magnetic response.
- MPTs give us a unique avenue to probe superconducting effects in MoAu films.

- Photon pulse width: 0.7 us, repetition rate: 70 kHz
- 10,000 triggered records at each T

- Photon noise $\Delta I/\sqrt{I}$ subtracted

- Measured C and G using 3-eV photon data only (left) and together with noise spectrum data (right)
- The two methods share the same dI/dT and τ values

Theory

1. Free-energy difference between superconducting and normal states of MPT
 - f = fraction of meander length for which MoAu enters a partly-normal intermediate state
 - g = fractional width of normal stripes in intermediate state region
 - C_s = superconducting energy gap reduction in Ginzburg-Landau equation
 - S = number of superconducting energy gap reductions
 - M = Magnetic field
 - N = Normal region
 - T_0 = Critical temperature
 - ϕ = Magnetic flux
 - λ = Ginzburg-Landau parameter
 - α = Electronic parameter
 - β = Magnetic parameter

2. Heat capacity from second derivative of free energy
 - $C(T)$ = heat capacity
 - ΔT = Temperature
 - $\Delta G(T)$ = Free energy difference
 - $\Delta M(T)$ = Magnetic field difference

3. Thermal conductance: quasiparticle recombination & electron-phonon cooling
 - In superconducting regions, recombination of quasiparticles into Cooper pairs should be dominant cooling mechanism.
 - In normal regions, quasiparticles cool by only phonon emission.
 - We estimated Kaplan’s τ_c and Wellstood’s δ from the electronic and mechanical parameters for Mo and Au. A priori values fit dI/dT data within one order of magnitude.

Conclusions

- We measured the variation in heat capacity and thermal conductance of a molybdenum-gold Magnetic Penetration Thermometer (MPT) near its field dependent Meissner transition temperature.
- We did this by two methods: detection of pulses in response to absorption of one or more 3 eV photons, and equilibrium noise measurements.
- Observed C and G show peaks in approximate agreement with a Ginzburg-Landau model of the superconducting intermediate state of an MPT.

References