Spatial Disparities in Dengue Risk along the US-Mexico Border

Cory Morin
Andrew Monaghan
Kacey Ernst
William Crosson
Dale Quattrochi

1NASA – Marshall Space Flight Center, Huntsville, AL
2National Center for Atmospheric Research, Boulder, CO
3University of Arizona, Tucson, AZ
4Universities Space Research Association/Science and Technology Institute, Huntsville, AL
Mosquito-borne Disease Ecology

- Annually ~96 million cases of disease worldwide
- Endogenous transmission in Florida + Texas
- Symptoms: muscle and bone ache, fever, and hemorrhagic manifestations in rare cases
- 4 serotypes of virus

West Nile Virus

Dengue Virus

Mosquito Life Cycle

Gina Mikels, www.scientificillustrator.com
Environment - Vector - Virus Connections

- Temperature
- Immature Habitat
- Precipitation
- Development
- Survival
- Reproduction
- Transmission

Positive Relationship
Negative Relationship
Positive or Negative

Environment: Vector: Pathogen:
Modeling Dengue Fever in Sonora, Mexico

- Dengue ecology
 - Mosquito population dynamics
 - Virus transmission dynamics
- *Aedes aegypti* mosquitoes
 - Urban, container breeding
 - Live in tropical habitats
 - Anthropophilic
- Sonora Mexico
 - Arid climate
 - Monsoon precipitation
 - Seasonal cycles of dengue transmission
 - Large annual variations in epidemics

[Map of Dengue Fever and Aedes Mosquitoes in 2000]
Data and Methods

• Study area
 • 4 sites in Sonora, Mexico

• Meteorological/Dengue case data
 • Daily maximum and minimum temperatures (NLDAS)
 • Daily precipitation (TRMM, NLDAS)
 • Weekly suspected dengue cases by city 2006-2011

• Model
 • Parameterized for *Aedes aegypti* mosquitoes, daily time step
 • Run from 2005-2011 under varying parameters (500)
 • Best 3% of runs chosen by comparison with suspected case data (R^2)
Model Parameter Estimation

- **Containers**
 - Based on household surveys (Hermosillo)
 - Human managed and open containers
 - Used mean values and +/- 25% and 50%

- **Minimum infectious rate**
 - Minimum amount of infectious humans
 - Maintains virus within the population
 - Based on case data and previous study in San Juan, PR

- **Maximum larval density**
 - Used to calculate density-dependent mortality
 - Based on observations, literature, and previous study in San Juan, PR
Modeling *Aedes aegypti* and Dengue Virus Ecology
Dengue and Climate Comparisons

- Dengue Cases per 100,000
 - Epidemics asynchronous
 - Very Similar

- Precipitation
 - Variable

- Max Temperature (°C)
 - Very Similar

- Min Temperature (°C)
 - Very Similar
Climate, Dengue, Simulations: Hermosillo

- 2008 and 2010 are largest dengue years
- Epidemics follow monsoon rains
- Precipitation magnitude not correlated with dengue case incidence
 - Introduction rate is likely important
Climate, Dengue, Simulations: Guaymas

- Dengue is highest in 2010 despite dry conditions
 - Similar to Hermosillo
- Driest city examined
 - Importance of human managed water sources
- Model has difficulty simulating seasons with no peak
 - 2008 + 2011
Climate, Dengue, Simulations: C. Obregon

- Lowest annual variability in dengue cases
- Model has difficulty simulating seasons with no peak
 - 2011
Climate, Dengue, Simulations: Navojoa

- 2008 is highest dengue year
- Dengue transmission is low in 2010
 - Unlike Hermosillo and Guaymas
- Model has difficulty simulating seasons with no peak
 - 2006, 2007, and 2010
Dengue Transmission in Nogales

- Why is there little/no dengue transmission in nearby Nogales?
- Hypothesis: Climate conditions are cooler
 - Suppression of mosquito population
 - Extension of extrinsic incubation period (EIP)
- Experiments:
 - 1: Rerun Hermosillo simulations with Nogales meteorological data
 - 2: Perform experiment 1 with 1°C warming
 - Performed during large epidemic years (2008 and 2010)
Hermosillo/Nogales Comparison: Mosquitoes

- Little/no dengue is simulated under Nogales meteorological conditions
- With warming, there is a modest mosquito population increase in 2008
 - No dengue
- With warming, the mosquito population is higher under Nogales conditions in 2010
 - Results in increased virus transmission
Hermosillo/Nogales Comparison: EIP

- EIP is considerably longer under Nogales conditions
- Under Nogales conditions, the EIP is longer during the transmission season in 2008
 - Prevents completion of EIP during mosquito lifetime
- EIP shortened under 1°C warming conditions
 - Especially during transmission season
Challenges in Climate and Health Research

- Reporting problems
 - Misdiagnosis
 - Subclinical cases
 - Reporting errors/bias
 - Availability of data

- Knowledge gaps
 - Incubation periods
 - Transmission probabilities
 - Evolution and adaption of virus and human immunity

- Human vs. climate influences
 - Socioeconomic status
 - Microclimatic influences
 - Human adaptions to climate
Conclusions

• Nearby locations can exhibit very different patterns of dengue transmission
 • Differences in virus introduction
 • Small climatic differences can make large differences

• Dengue epidemics follows monsoon rains
 • Timing is consistent, however, the magnitude is not well correlated

• Climate is an important regulator of dengue transmission in Nogales
 • Affects mosquito population dynamics and the virus incubation period
 • Year to year variability is important

• Dengue transmission dynamics in northern Mexico may affect dengue risk in the United States
 • Travel, climate change
 • Recent dengue epidemic in Nogales
Next Steps

- Run model for additional locations along US/Mexico border
 - Does transmission vary?
 - Why?
- Perform fine scaled model runs
 - How does risk vary within a city?
- Consider socioeconomic conditions in model
Thank You for Your Attention!

Questions?