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THE MOTION OF A SATELLITE OF THE MOON"

Harry Lass

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

. INTRODUCTION

The motion of a satellite of the Moon depends on the potential field due to the Moon as well as the
gravitational effects of the Earth and Sun. If one chooses a frame of reference attached to the Moon, it can be
shown that the force field resulting from the Sun can be neglected when compared with the perturbing field of the
Moon resulting from its oblateness. The effect of the Earth’s field on the satellite is of the same order of
magnitude as the Moon’s perturbing field and must be included in an analysis of the motion of a satellite of the
Moon. We will assume that the distance between Earth and Moon remains constant, and we will consider satellite
orbits of small eccentricity. It will be shown that a nearly circular polar orbit will digress less than 1 deg from

a polar orbit and that the change in eccentricity is less than a factor of e in one year.

Il. COMPARISON OF THE EFFECTS OF THE EARTH AND SUN
ON THE MOTION OF A SATELLITE OF THE MOON

Let m, M, M, M;, be the masses of the satellite, Moon, Earth, and Sun, respectively. We assume that a
coordinate system centered at the Sun is an inertial frame of reference. From Sketch 1, the motion of the

satellite is given by

d? d d?
m % m s (1)
de? de? de?

* This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, Califomia
Institute of Technology, under Contract No. NASw-6, sponsored by the National Aeronautics and Space Administration.
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From
d2p
m d_t2 = Fm(MO) + Fm(M) + Fm(M)
(2)
d2.

di?

with FM (Mo) the force of the Sun on the Moon, etc. (neglecting the force of the satellite on the Moon), Eq. (1)

becomes
d2r m m
LA [Fm(Mo) -z FM(MO)] o [Fati) - 2 P
de M
(3)
GmM, G mM, GmM GCmM
=F M+ |- p+ e I (v+n + v
lp|® |I's| v+ 3 |vi3
The magnitude of the middle term of Eq. (3) can be approximated by GmMy|r|/| s |3 for |r|<< | s|; the
magnitude of the last term of Eq. (3) can be approximated by GmM|r|/| v|3 for | r| << | v|. The ratio of these
terms is
M 3 3
0 240,000 1 -
——> x = (330,000) |————— = —. 1072 (4)
M/ s 93,000,000 2
Thus, we are justified in omitting the effect of the Sun.
Sketch 1
2
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lll. LAGRANGE’S EQUATIONS OF MOTION

Let the Lagrangian, L = T - ¥, of a system of particles be given by L = L(x1, 22, ..., #8, x1 22, ... , 2, 0).

bl

t
The extremalization of ftol L dt leads to Lagrange’s equations of motion
d ([dL oL
— =) -—=0 i =12-,n (5)

We will be interested in transformations of the type
x" = xi(yl,...,yn, y""'l’ ...,y”*m) i = 1,2,-..,]; (6)

such that the Jacobian |dx%/dy/}, i, ]'. = 1,2, ,n, does not vanish. It is a simple matter to show that
d oL\ oL |d oL\ oL |ae
— =)= == -—|— i=12-,n+m (7)

with L (y1, .. yn*m o1 ):’””', t) = L(xl, ..., 2", x, ..., 2%, ¢). The index, a, of Eq. (7) is summed from
1 to n. From Eqs. (5), it follows that

i fa\ oL
—|—=]-—=0 i=12--,n+m (8)
dt \dy* dyt

Moreover, if |d%%/dy/| £ 0, i,j = 1,2, ,n, one quickly deduces that the vanishing of d/d¢(3L/d5%) — oL/9y*
fori=1,2,--,n, yields the set of Eq. (5). Thus y**1, ..., y®*™ can be chosen in any arbitrary manner, and in
particular, one can adjoin to Eq. (8) m differential equations involving yl o, yntm

are not inconsistent with d/dt(aL/ay'i) - aL/ayi =0,i=1,2,---,n. We will make use of this result in a sub-

, provided these new equations

sequent analysis.
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IV. THE AVERAGING PROCESS OF KRYLOFF-BOGOLIUBIOFF
Let x () satisfy the equation

ZTZ = ef(x, siny, cosy)), €<<1

One replaces f(x, siny, cos ) by its average value, considering x as a parameter, to obtain

d 2m
—‘-l% = —56; ’L‘ f(x, sin 6, cos 8)d8 = €eF(x)

)

(10)

We are justified in replacing Eq. (9) with Eq. (10) as x is slowly varying and, hence, remains essen-

tially constant as s ranges over the interval (i, Y + 277). An integration of Eq. (10) yields x = x (i, €). This

method of obtaining an approximate solution of a nonlinear differential equation can be extended to a system of

differential equations of the type given by Eq. (9).
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Y. QUASI-EULERIAN COORDINATES

A description of the quasi-Eulerian coordinates associated with a moving point P is given in Sketch 2.
The x-axis points towards the Earth, the y-axis points in the direction of the orbit of the Moon, and the z-axis is
the polar axis (axis of rotation of the Moon). The X-Y-Z frame is an inertial frame of reference coinciding with
the x-y-z frame at ¢ = 0. The unit vector N lies in the x-y plane, and M is a unit vector normal to N in the plane

formed by N and the position vector r. We define H such that H= N x M.

Sketch 2
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The coordinate transformation between the spherical coordinates (&, ¢) and the quasi-Eulerian coordinates

(o, B,Y) can be obtained as follows:

N = cosai+sinaj
H = sinBsinai- sinBcosaj+cos Sk
M=HxN = -sina cos Bi+ cosacos j+ sin Sk
(11)
v, = cosy N+siny M
= (cos y cos a - sin Y sin a cos B) i + (cos Y sin a + sin Y cos a cos ) | + sin U sin Sk
= sin O cospi+ sin Osinj+cosbk
so that
sin @ cos ¢ = cos iy cos a — sin ¥'sin a cos 3
sin 0 sin ® = cos Y 'sin a + sin Y cos a cos 3 ' (12)

cos 8 = siny sin 3

yieldingr=r, 0= 6(y,8), ¢ = ¢(a, B, Y). This is the type of transformation of coordinates discussed in Sec.
L

The angular velocity of the H, N, M frame of reference is given by

® = d'BN+ (io;+Q) k

dt dt
(13)
= cosBla+ O)H + AN +sin Bla+r Q)M
The velocity of the point P is
v=-idi—=ﬂ+mxr (14)
dt de
6
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with r=r cosy N + r sin y M. Thus

v=r[sinyB-cosysinBla+Q)] H+ [r cos y—rsiny k,}l—rsink[lcos,@ (a+ Q)] N

(15)
+ [rsiny+rcosy y+rcosycos BlatQ)] M
which yields the kinetic energy per unit mass given by
1 . y * .
T = - [r2 47202+ 72 sin2 ¥ B2+ 2 (1 - sin? ¥ sin2 B) (a+ Q)2
(16)

- 2r2siny cos\,b'sinﬁ/:?(&+ Q) + 2r2 cosﬁg‘b(&+ )]

After Lagrange’s equations of motion are set up, we will impose the constraint that v be perpendicular

to H, yielding

sinl#)@.— cos ysin B(a+Q) = 0 a7

Neglecting higher order terms, it can be shown that the Moon’s potential is given by (see Ref. 1)

R r 3

R RY [1
Vy = _ﬂ{—+ <—— sinzk[J sin2,3>
r 3

(18)

R3K
+

r3

[cos 2a (cos? Y — sin?  cos? 3) - sin2a sin 2y cos ,3:}

The principal moments of inertia of the Moon about the x-y-z axes, respectively,are 4, B, C. M is the

mass of the Moon, and R is the radius of the Moon in the direction of the orbit of the Moon (y — axis). The



Jet Propulsion Laboratory Technical Release No. 34-56

numerical values of / and K are obtained from Ref. 2., although slightly more accurate values can be obtained

from Ref. 1. The values of / and K are

3 1 1
J (C——A—?B> = 0.00034

2MR2 2
(19)
3
K = —— (B-4) = 0.00035 £ 0.000015 ‘
4MR2

One must also obtain the ‘potential due to the Earth. The x-axis points toward the Earth, thus, the third

term of Eq. (3) can be written (for a unit mass) as

E - cHdo (x-D)i+yj+zk i (20)

3
s D2
[(x -DY?+y2+ z2] 2

For x2 + y2 + 22 << D2, with D the fixed distance between Earth and Moon, Eq. (20) can be replaced by

Fa-G—M(?.xi—yl—zk) =—V|:ﬂ—(—3x2+r2):| (21)
D3 op3

Thus the potential due to the Earth is

Vo = e - M2 36in26 cos? 9)
2D’ 2D3
(22)
G
. 2 [1 - 3(cos Y cos a ~ sin Y sin a cos £)?]
2D3
8
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from Eq. (12). The total potential is ¥ = V| + V5, as given by Egs. (18) and (22). Comparing R3K/r3 with
(GM/2D3)r2 for a satellite near the Moon yields

R3K 2D3 2KD3 2k D3 2.3.107° (240,000)3 .
= = o = 1
3 2 2 GM M 32
R® GMR® — CMR* "7 ¥ pa "2 (g0) (1100)*
Rz M 6- 5280

(23)

Thus, the K-term of V| may be slightly more important than the V4 term in determining the motion of the

satellite.
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VI. EQUATIONS OF MOTION

ForJ=K=0, Q=0, D =, one has Keplerian motion in the M, N plane, provided that H is chosen

“normal to v. For this case, 8= constant, a = constant, u = 1/r = GM/h%+ A sin y+ B cos \, with 4, B, k constants

of the motion. Thus, for J, K << 1, Q/L/J << 1, R/D << 1, one assumes that 83, a, h, A, B will be slowly varying
quantities. Thus, we will neglect the terms (a+0)2 ,32, (a+ )5, Q2, k a, etc., in Lagrange’s equations of

motion given by

i(ﬁﬁ) _ 9 u =By (24)
dt du ’

The equation for u = a is a consequence of the Egs. (24), and will be replaced by Eq. (17).

The equations of motion are, respectively,

2GMR?J

L (r2 sinzkﬁﬁ.—rz sin  cos Y sin B(a+ Q)] = —r2 sinﬁ\/.l (a+0)- 3 sin2  sin B cos
dt r
2
+ GMR3 K [2 cos2a sinztb sin B cos B+ sin2a sin 2 sin ] (25)
r
3GMr?
+ " (cos Y cos a — sin Y sin a cos S) sin Y sin a sin 8
D
. . 2 2GMR2K
i (r2y+r2cos Bla+Q)] = - 2MR°T sin ) cos Y sin? 3 — —G——
dt ) 3
[cos 2a (1 + cos? ) sin Y cos \f + sin 2 acos B cos 2¢] (26)
3GMr2

(cos Y cos a — sin Y sin a cos ) (sin Y cos a + cosyY sina

D3
cos B)

10
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fi:r¢5+mcwﬁ¢(d+ﬂy-fﬂuuﬁygz-(l—sm2¢gﬂﬁ
di2 2 4 3
_ EE?RzK [cos2a (cos? s~ sin? Y cos? B) - sin2 a sin2 s cos ] (27)
GMr

- [1 - 3(cos ) cos a— sin Y sin a cos £)2]

D3

We note that, if 3= 0 at ¢ = 0, then 8= 0 satisfies Eq. (25) and the initial condition, so that an equatorial
orbit remains equatorial. For 8 # 0, 77, making use of Eq. (17) along with 12y = & # constant, Eq. (25) becomes

da Qr2  26MRY GMR2K
ge _ 2 sinzk,llcos,3+ (2 cos 22 sin2¢cosﬁ+sin 2a sin2 )
dy h R h2r
(28)
er4 ( . . ) . .
+ W cos Y cos a — sin Y sin a cos ) sin Y sin a
Applying the method of Sec. IV with
1 AR? Bh?
u=—=%+Asink,b+Bcosu,lJ=ﬂ 1+ sin Y + cos
r B2 A2 GM GM
32 AR2 BA2 Ah? Bh?
r= — |[1- sin Y ~ cosy | for small eccentricity, — <1, — << 1,
GM GM GM GM GM
one obtains
n
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Qrd G2M2RY GM2R2K 3 MhS
- - cos B+ ————— cos2acos 8- — ———— cos Bsin

G2M2 h4 B4 2 G3M4Dp3

Q43 C2M2R2 3MA10
= - - cos B ] -K cos2a+ ———— sin a
G2M2 h4 2G65M6R2D3

From Egs. (17) and (28), one obtains

2 2
% = :?st sin 8 <-3—:;-+ Q; > = - 26:? ! sin Y cos Y cos B sin

2GMR2K

+ ——— (cos2a siny cos Y sin Bcos B + sin2 a sin B cos? V)
h2r :
+ i (cos Y cos a — sin Y sin a cos B) sin a sin Scos Y
h2p3

Applying the averaging process of Sec. IV yields

2M2R2 3M},10
¢ K+ —————— | sin2asinf
4GSMSR2D3

2

a

(29)

(30)

(31)

12
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In order to determine the change in the angular momentum, 4 = r2 {/, we return to Eq. (26). Thus,

dh d [da Qr? 26MR?J
— = ~hcos 85— el - sin Y cos  sin?
dy dy \ dy h hr
26MR2K
ST [cos 2a (1 + cos? ) sin y cos Y+ sin 2a cos B cos 2 ] (32)
r
3GMr*

- (cos Y cos a— sin Y sin a cos B) (sin Y cos a + cos Y sin a cos )

hD3

negiecting the terms involving ,3.((;. +Q), h(a+Q). Making use of Eq. (28) to eliminate d/dy (da/dy + QL r2/k)
yields

dh  4GMR?J 2GMR?] du 2GMR2K
2 s 23 siny cosy + — sin?y cos2 3 - o cosB(cos2asin 2y cosB+sin2acos 2y)
dy ) Edy h
CMRZK  d 3GM
- J(ZCOSZGCOSB siny + sin2asin2y) — [sinacosa(coszk/l—sin2¢l)—sin2acos,3$in2¢l] cosf3
hdy hD3y*
12GM  d 26MR2J
+ 2 cos B (cos Y cos a — sin Y sin a cos B) sin Y sin a - u sin s cos J sin? 3 (33)
RD3yS dy

2GMR2K
- u [cos 2a (1 + cos? ) sin Y cos Y + sin 2a cos B cos2 ]
3GM . . )
- (cos Y cos a — sin Y sin a cos ) (sin Y cos a + cos Y sin a cos 3)
hD3y4

13
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neglecting the terms involving J (dh/dy), K (dh/d\y). Now u= GM/h% + A sin y+ B cos ), with &, A, B constants
of the motion for / =K =0, =0, D = =, so that v = du/dy= A cos Y — B sin ). We define v = du/dy =
A cos Y — B sin iy in a subsequent analysis. Applying the averaging process of Sec. IV yields

dh
<W =0 - (34)

Thus, for nearly circular orbits, the angular momentum & = r2 Y remains essentially constant. We are now

in a position to find a relationship between a and 3 from Egs. (29) and (31). Removing the < > signs one obtains

aA10 QA? A0
K+ ——— | sin2asin Bda + + cosB (/] -K cos2a+ —————— sin?al| dB=0
4G5M6R2D3 GAM*R2 2G°M6R2D3

(35)

with & = constant from Eq. (34). Equation (35) becomes exact upon multiplication by the integrating factor sin 3.
An integration yields

20 47 ' 3R 10
cos B+ | J-K cos2a+ ———— sin?
GM4R2 2G5SM6R2D3

a| sin? 8 = constant (36)

Accurate observations of a nearly circular satellite of the moon would yield values of a, 5, and 4, from
which one could obtain values of / and K from Eq. (36).

In order to investigate the stability of a nearly circular polar orbit, let 8=7/2 - 0, c<< 1, sin 8= 1,
cos B = a; thus, from Eqgs. (29) and (31)

do  G2M2R? 34410 .
- K+ sin 2 a
dy B4 4G5M6R2D3
(37)
da Qrd
dy G2m2
14
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An integration, with o= 0 for Y= ), yields

GAM4R2 3MA 10 Q43 Q43
X )
o = + —— — cos |2 ag - Yy + cos|2 ag - k/!o (38)
2047 4GSMSR2D3 G2M2 G2M2
so that
< G4M4R2 3Mh10
!or} < K+ ——m8M—— (39)
Qa7 4GSM6R2D3 :

For a satellite near the Moon’s surface, 2= GMR = R% 2, <> = 277/100 rad/min, Q = 277 /43000

rad/min

A

o |

. o\ 3
%_>. K+ % <%> (%) ~ (430) [(3.5)1075 + 6 - 1076] ~ (1.5)1072 rad < 1 deg (40)

13
/
thus, an almost circular polar orbit near the Moon’s surface will deviate at most 1 deg from the polar plane. For

a near circular polar orbit with r = 2R,

430 i}
lo] € 22 [(3.5)1075 425 .6 106] = 8- 1073 rad < 0.5 deg (41)

27

Since the preceding analysis requires an orbit of small eccentricity, it is necessary to study the radial
motion of the satellite in order to determine the rate of change of the eccentricity, € = h2/GM /A2 + B2, We

return now to Eq. (27). From r2 s = h, it follows that

15
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2 2
dr_ kA T g2 g dh e (42)
dt 2 dy dy de? dy? dy dy

Thus, Eq. (27) becomes

du
—_—=
dy
d 1 dh 2 d 2Ju?
2 u+£—M—-—v——c?—iB- 2 2% 0 4 SCMR ]?— l—sinzk/}sinzﬁ
dy Rk dy hu dy A2 3
3CMR2Ku? :
+ — = [cos2a(cos? Y — sin? Y cos? £) sin2 a sin2 ¥ cos (] (43)
1X
cM
+ [1- 3(cosy cos a~ sin J sin a cos B)z]

h2D3u3

The solution of Kq. (43) for / =K =0, {} = 0, D = «, is

CM
u= — + A siny + B cos
B2
(44)
v = Acosy~ Bsiny
16
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The parameters 4 and B are now varied, with the result that

dA  26GM dh 1 dh 2 d 3GMR2I , [1
— = —— —— sinY——~—vcos Y- cos hu2~g—+Q cos Y + N sinzlﬁsinzﬁ cos Y
dy k3 dy h dy hu dy h2 3
2
+ M u? [cos2alcos? - sin2 y cos? B) - sin2a sin 2y cos ] cos ¥
k2
GM
+ [1-3(cosycosa- sin¢sinacos,8)2] cos Y
hr2p3,3
(45)
3CMR2] 4 (1
l—15=2—GM——dh— cost/J+l£vs'ingb+ 2cos8 hu2ia;+Q sin Y — M u? [ = - sin? Y sin? B) sin ¢
dy  k dy hdy hu dy h2 3
2
- w u? [cos 2 a (cos? Y~ sin? Yy cos? f3) ~ sin 2 a sin 2 cos B] sin Y
B2
- cH [1-3(cosy cos a- siny sina cos £)?] siny
h2D3y3

One now substitutes dh/dy, as given by Fq. (33), and (hu? (da/dy) + Q], as given by Eq. (28),
into Egs. (45), with u = GM/k2 + A sin Y+ B cos Y, du/d\y = v=A cosy - B sin . Neglecting higher powers
of Ah2/GM, Bh 2/GM, and applying the averaging process of Sec. IV, one obtains

17
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dA G2M2R? 5 1
_ J (2- — sin2,8>B+K [—3cosﬁsin 2a4+ —(3-5cos?p) cos2a.B:|
dy B4 2 2

MRS 15 3
+ - —Asin2acosB+B 6cosza——>
D3G3m4| 4 2
(46)!

2 2R2 5
<i-B-> —GM ]<2—-—sin2,8>A+K 3cos,35in2a.B+l(3—5c092,3)cos2a14
dy h4 2 2

I

6
+ Mh ls-—Bsin2acos,3+-3i (1+ 0092@_53inza°°325)
D3G3M4 | 4 2

The terms in < dA/dy>, <dB/dy> involving J and K arose without the assumption of small eccentricity.
The presence of the Earth’s field on the satellite accounts for the nonsymmetric terms in Egs. (46); the assump-
tion of small eccentricity was introduced to derive these terms. R. E. Roberson (Ref. 3) first obtained the critical
angle given by sin2 S= 4/5 (see Eq. 46).

Removing the < > signs, Eqs. (46) yield

dA dB 2M2R2
A—4+B — = - —39———1( cos Bsin 2 a (42 + B?)
dy dy h4
(47)
MK 15 15
+ [—- — sin 2a cos B(42 - B2) + — (cos? a - sin? a cos? B) AB]
D3G3m% 4 2 .
For an orbit which remains nearly polar, 8= 77/2, cos 8= 0, and
1 F. Yagi, JPL, assisted in checking the results of this equation.
18
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494,538
dy dy 15MAS AB . 15 MiS
= 0052 a = —
A2, B2 oD3G3M4 A2+ B2 4 D3G3M4

d 15 Mr®
~— In(42+B?) € — (48)
dy 2 p3c3mé
1,
(424 89* 15 MASy
T4z, g2\% - TP \s pagams
(42 + B2) D3G3M
with 4 = 4y, B = By for y = 0.
Now the eccentricity of the orbit is given by € = 2/GM y/ 42 + B2 ; thus,
15 MA®
e S €y exp | — (49)
D334

with €, the initial eccentricity. The eccentricity will increase at most, by a factor of e when 15/4 MRS/D3G3MA
=1,ory = 4/15 D3G3M*/MkO rad. For an orbit near the Moon’s surface, #2 =~ GMR, and Wy = 4/15 (M/M)(D/R)3

rad = 1/3 . 105 rad, The time, 7, associated with this increase of eccentricity is

105 100
T= — ————— yr = lyear (50)
67 60 .24 . 365

We have shown that a satellite of the Moon will tend to remain in an almost circular polar orbit for a

considerable length of time.

19
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