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THE MOTION OF A SATELLITE OF THE MOON* 

Harry Lass 

Jet Propulsion Laboratory 

California Institute of Technology


Pasadena, California 

I. INTRODUCTION 

The motion of a satellite of the Moon depends on the potential field due to the Moon as well as the 

gravitational effects of the Earth and Sun. If one chooses a frame of reference attached to the Moon, it can be 

shown that the force field resulting from the Sun can be neglected when compared with the perturbing field of the 

Moon resulting from its oblateness. The effect of the Earth's field on the satellite is of the some order of 

magnitude as the Moon's perturbing field and must be included in an analysis of the motion of a satellite of the 

Moon. We will assume that the distance between Earth and Moon remains constant, and we will consider satellite 

orbits of small eccentricity. It will be shown that a nearly circular polar orbit will digress less than 1 deg from 

a polar orbit and that the change in eccentricity is less than a factor of e in one year. 

II. COMPARISON OF THE EFFECTS OF THE EARTH AND SUN 
ON THE MOTION OF A SATELLITE OF THE MOON 

I

Let m, M, 1W, M0 be the masses of the satellite, Moon, Earth, and Sun, respectively. We assume that a 

coordinate system centered at the Sun is an inertial frame of reference. From Sketch 1, the motion of the 

satellite is given by 

I
d2r	 d4	 d2s 

i

* This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California 
Institute of Technology, under Contract No. NASw-6, sponsored by the National Aeronautics and Space Administration.

(1)
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From

d2  
M
	 = F (M0) + Fm (M) + m (M) 

dt 

M	 = FM (MO)+ FM (M) 

dt2 

with FM (M0) the force of the Sun on the Moon, etc. (neglecting the force of the satellite on the Moon), Eq. (1) 

becomes

d2r 
m - = F(M) + 

I
Fm(MO) - j- F(M0)] + [Fm(s) - --- F()] 

dt2

( GmM0	 GmM0 '\	 [ GnzM 
= F (M)+ .-	 p+	 sj +	 (v+r)+	 v 

M	

lpI	 ti	 I	 L 	 ly + r13	 II 

The magnitude of the middle term of Eq. (3) can be approximated by GmMolrj/l s 1 3 for I r  << I s I; the 

magnitude of the last term of Eq. (3) can be approximated by GmMI '1/ I v 1 for I 'I << I v. The ratio of these 

terms is

	

3	 3 
I I	 (330,000) ( 248000 )

	

± . io	 () 
M I II	 \93,000,000	 2 

Thus, we are justified in omitting the effect of the Sun.

(2) 

(3) 

M0

Sketch 1

2
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III. LAGRANGE'S EQUATIONS OF MOTION 

Let the Lagrangian, L = T - V, of a system of particles be given by L = L(x 1, x2, ..., x", 	 2, •••, fl, t).

The extremalization of ft t 1 L dt leads to Lagrange's equations of motion 

	

d (TIL\ 
	 (5) dt	 I 

We will be interested in transformations of the type 

Xi = x • (y 1, ... , y", y'1	 ...,	 ")	 I = 1, 2, ... , n	 (6) 

such that the Jacobian jdx/Oy/I, 1,1	 1 9 29 ... , n, does not vanish. It is a simple matter to show that 

d (ai\S - 3L - [d (CL "\	 a 1 axa 

dt \ j J	 ay'- [ 

	 (7) 

with L( 1	 •	 nm 

	

7 '•iiY n+m 'Y 1 i" ' Y + , t)	 L(x1,...,x",	 t). The index, a., of Eq. (7)is summed from 

1 to n. From Eqs. (5), it follows that 

d (aL\	 3L 
-	 - - = 0	 1 = 1,2,.",n+m	 (8) 
dt \ä/	 3yi 

Moreover, if Iax1/aviI 0, 1,1 = 1,2,.. . ,n, one quickly deduces that the vanishing of d1dt(49L14') - aL/ay-

for i = 1, 2, , n, yields the set of Eq. (5). Thus n+1, ... , .fl+m can be chosen in any arbitrary manner, and in 

particular, one can adjoin to Eq.(8) m differential equations involving y, ... , 7n+m, provided these new equations 

are not inconsistent with d/dt(aL/(9) - 8L/3y1 = 0, 1 = 1, 2,... , n. We will make use of this result in a sub-

sequent analysis.

3
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IV. THE AVERAGING PROCESS OF KRYLOFF-BOGOLIUBIOFF 

Let x(/t) satisfy the equation 

dx 
- = cf(x, sin tk, cos	 € << 1	 (9) 

One replaces f(x, sin 15, cos &) by its average value, considering x as a parameter, to obtain 

, 2ir dx	
€	 I	 f(x, sin 0, cos 0)dO = €F(x)	 (10) 

;-	 Jo 

We are justified in replacing Eq. (9) with Eq. (10) as x is slowly varying and, hence, remains essen-

tially constant as /1 ranges over the interval (&, 1, + 2). An integration of Eq. (10) yields x = x(/i, €). This 

method of obtaining an approximate solution of a nonlinear differential equation can be extended to a system of 

differential equations of the type given by Eq. (9).

4



Y 

Jet Propulsion Laboratory	 Technical Release No. 34-56 

V. QUASI-EULERIAN COORDINATES 

A description of the quasi-Eulerian coordinates associated with a moving point P is given in Sketch 2. 

The x-axis points towards the Earth, the y-axis points in the direction of the orbit of the Moon, and the z-axis is 

the polar axis (axis of rotation of the Moon). The X-Y-Z frame is an inertial frame of reference coinciding with 

the x-y-z frame at t = 0. The unit vector N lies in the x-y plane, and N is a unit vector normal to N in the plane 

formed by H and the position vector r. We define H such that H = N x N.

Sketch 2

5
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The coordinate transformation between the spherical coordinates (8,(k) and the quasi-Eulerian coordinates 

(a,j3,qi) can be obtained as follows: 

N = cos ai+ sin aj 

H = sin /3 sin ai— sin /3 cos aj+ cos/3k 

M = H x N = — sin acos/3i+ cos a cos /3j+ sin /3k
(11) 

Ur = cos i/iN+ sin qiM 

= (cos /i cos a - sin /) sin a cos 8) i + (cos ) sin a+ sin ,& cos a cos 8) I + sin ip sin /3k 

= sin 8 cos	 + sin 0 sin c/j + cos 8k 

so that

	

sin 8 cos	 = cos Ji cos a - sin /J sin a cos /3 

sin Osin	 = cos /J sin a+ sin /i cos a cos /3	 (12) 

cosO = si1isin/3 

yielding r = r, 8= 0(/i,/3), 0 = qS(a, /3, /i). This is the type of transformation of coordinates discussed in Sec. 

Ill.

The angular velocity of the H, N, M frame of reference is given by 

	

= d/3Ida	 \ 
Ct)	 N+ t_+cIl k 

	

dt	 \dt	 I

(13) 
= 

The velocity of the point P is

dr	 Dr
(14)  

dt	 de

6
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with r=rcosJiN+rsin/iM. Thus 

V = r [sin /3— cos qj sin /3(+)1 H+ [cos— r sin 0 qj —r sin cos$ (+ fl)] N 

+[i sin t/i+r cos /i/i+r cos tpcos/3(ct+cl)]M 

which yields the kinetic energy per unit mass given by 

T = I [2 + r2 Ip* 2 + r2 sin 2 p /32 + r2 (1— sin2 0 sin 2 8) (+ c)2 

- 2r2 sink/I cos',lJ sin /3/3(+fl) + 2r2 cos/3Jr(cx+ I)] 

After Lagrange's equations of motion are set up, we will impose the constraint that v be perpendicular 

to H, yielding

sin J/3— cossin/3(+) = 0	 (17) 

Neglecting higher order terms, it can be shown that the Moon's potential is given by (see Ref. 1) 

GM IR R3J/1 
V 1 = - -

	
+	

- sin 2 JJ sin2 /3)

(18) 

R3K 
+	 [cos 2a(cos2 '/1 - sin 2 /1 cos 2 /3) - sin2a sin2Ji cos 

r	 J 

The principal moments of inertia of the Moon about the x-y-z axes, respectively, are A, B, C. M is the 

mass of the Moon, and R is the radius of the Moon in the direction of the orbit of the Moon (y - axis). The

(15) 

(16) 

7
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numerical values of / and K are obtained from Ref. 2., although slightly more accurate values can be obtained 
from Ref. 1. The values of I and K are 

=( -	 A - ± B'\	 0.00034 
2	MR2	 2 /

(19) 

K =
	

(B - A) 0.00035 ± 0.000015 

One must also obtain the potential due to the Earth. The x-axis points toward the Earth, thus, the third 

term of Eq. (3) can be written (for a unit mass) as 

(x—D)i-+-yJ-i-zk	 i 
F = GM 	

I(x — D)2 + y 2 + Z2 1 
3 -	

(20) 

For x2 + Y2 + Z2 <<D2, with D the fixed distance between Earth and Moon, Eq. (20) can be replaced by 

GM 
F - (2xi_yI_zk) = - V [_!_ (_3x2+r2)]	 (21) 

D3	 LW3 

Thus the potential due to the Earth is 

GM	 GM 
V2 =	 (r2-3x2) =	 r2(1-3sin29cos2) 

2D3

(22) 

= 	 r2 [1 - 3(cos & cos a. - sin /i sin a. cos /3) 1 
2D

8
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from Eq. (12). The total potential is V = V 1 + V 2 , as given by Eqs. (18) and (22). Comparing R 3K/r3 with 

(GM120 3)r2 for a satellite near the Moon yields 

R 3K 2D 3	 2KD3	 2K	 D 3	 2. 3 . io (240,000) 
=	 - _________- -	 = 10	 (23) 

R 3 GMR 2 GMR2 - GM M	 32 

R2	 M R
4	 --	 (80) (iiOO) 

.5 6280 

Thus, the K-term of V 1 may be slightly more important than the V2 term in determining the motion of the 

satellite.

9
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VI. EQUATIONS OF MOTION 

For I = K = 0, cl = 0, D = co, one has Keplerian motion in the N, N plane, provided that H is chosen 

normal to Y. For this case, /3= constant, a= constant, u = hr = GM/h 2 4 A sin i/i+ B cos i/i, with A, B, h constants 

of the motion. Thus, for I, K << 1, cl/i/i << 1, RID << 1, one assumes that /3, a, h, A, B will be slowly varying 

quantities. Thus, we will neglect the terms (a+ cl)2, /32, (a+ Q) /3, fl 2 , h a, etc., in Lagrange's equations of 

motion given by

d /dL\	 IL
u=/3,i,Li,r	 (24) 

The equation for u = a is a consequence of the Eqs. (24), and will be replaced by Eq. (17). 

The equations of motion are, respectively, 

1r2 sin2 	 - r2 sin tPcos tksin 6 ( + cl)] = - r 2  sin 8 ( + fl) - 2GMR21 sin2 qj sin 8 cos 8 
dt	 r3 

GMR2K 
+	 [2cos2a sin 2 l/Jsifl/3c05/3+Sifl2asifl2 h/J Sifl/3 ]	 (25) 

r3 

3GMr2 
+	 (cos i/i con a - sin i/i sin a cos /3) sin i/i sin a sin 8 

-s-- [r2 i4 + 2 con /3 (c + fi)] 
= - 2GMR2I 

sin i// cos i/i Sin 2 
/3 - 2GMR2K 

dt	 r3	 r3 

[cos  2a(1+ cos 2 /3) sin i/i cos i/'+ sin 2acos/3 coo 2 t/i]	 (26) 

3G1Wr2 
-	 (cos i/i cos a - sin i/i sin a con /3)(sin i/i cos a + cosi/J sin a 

D3
cos/3)

10



Jet Propulsion Laboratory	 Technical Release No. 34-56 

= tL + 2r cos/3Ji (t+ 11) -	
-- 3GMR2J 

	 sin2
r 
dt 2	 r2	 r4	

Sfl 8) 

3GMR2K
[cos2 a (cos 2 /i - sin 2 1i cos 2 /3) —sin2 a sin2 /i cos /31	 (27) 

GMr
Ii — 3(cos i./i cos a — sin /i sin a cos /3)2] 

D3 

We note that, if /3= 0 at t = 0, then /3 0 satisfies Eq. (25) and the initial condition, so that an equatorial 


	

orbit remains equatorial. For /3 4 0, 7T, making use of Eq. (17) along with r2 & = Ii	 constant, Eq. (25) becomes 

da	 ci 2	 2GMR2J	 GMR2K 
= -	 —	 sin2/icos/3-i-	 (2 cos 2)Lsin2qi cos /3+ sin 2a sin 2/J) 

d/i	 h	 h2r	 h2r

(28) 

3GMr4 
+	 23 (cosqicos a— sin q.rsin a cos/3) sin & sin a 

Applying the method of Sec. IV with

/ 
U = 

1 
—= 

GM 
--+A sin +B cos = 

GM 
-- 1+ 

Ah2 
sin 0+ 

Bh2 
cos 

T	 h2 \	 GM	 GM 

h 2 /	 Ah 2	 Bh2	 Ah2	 Rh2 
r	 (1—	 sin /J -	 cosqi ) for small eccentricity, 	 <<1,	 << 1, 

GM	 GM	 GM	 J	 GM	 GM 

one obtains

11
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Id a\	 0h3	 G2M2R21	 G2M2R2K	 3 Mh6 

= - G 2M 2 -	 h4	 +	
cos 2a cos 8 - - 	 cos /3 sin 2 a 

2 G3M4D3

(29) 

2  2	 341h 10 11h 3	 GMR	 _______ 
-  

G2M2	
_K cos 2a+ 2G5M6R2D3 sin2a) 

From Eqs. (17) and (28), one obtains 

=	
;	 h2r 

(da ç,.2\	 2GMR21 
sin	 sin + 

-; ---) = -
	

cos /1 cos /3 sin /3 
dL/J	 sin /1  

2GMR2K 
+

	

	 (cos 2a sin /i cos qisin /3cos/3 + sin2a.sin /3cos 2 i/i)	 (30) 
h2,. 

3GMr4 
+	 (cospcosa-sinqisinacos/3) sin asin/3cos/' 

lz 2D3 

Applying the averaging process of Sec. IV yields 

1
= G2M2R2 /K+ 3Mh10 

( 
\d/	 h4	 \	

4G5M6R2D3)
 sin 2a sin /3	 (31) 

I 

I 

I 

I
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In order to determine the change in the angular momentum, h = r2 i/i, we return to Eq. (26). Thus, 

dli	 d 7da Ur2 \	 2GMR2J 
= —hcos/3----- (---_---_) -	 sin /i cos J'sin2/3 

d/i	 diji \d/i	 h /	 hr 

2GM!? 2K 
—	 [cos 2a (1 + cos 2 3) sin '/i cos Ji+ sin 2a cos /3 cos 2 /i]	 (32) 

hr 

3GMr4 —  
hD3 

(cos ./i cos a. — sin '/, O a cos /3) (sin 'Ji cos a+ cos t/i sin a cos /3) 

neglecting the terms involving /3 (ct +Q), h ( + U). Making use of Eq. (28) to eliminate d/dq (da/d/i + U r21h) 

yields 

dli 4GMR 2Ju	 2GMR2J du	 2GMR2Ku 
cos 2/3sin/icosJi+	 —sin2'Jicos2/3—	 cos/3(cos2asin2Jicos/3+ sin 2a cos 2/i) 

h	 d/i	 h 

GMR 2K du	 3GM 
—	 —(2cos2acos/3 sin 2 /'+ sin2asin2/i) -	 [sin acosa(cos 2 /J —sin 2 /i)— sin2acos/3sin2i1cos/3 

h	 d/i	 liD3u4 

12 GM du	 2GMR2J 
+	 Cos /3 (cos /J cos a— sin JJ sin acos/3) sin /i sin a—	 u sin /i cos /isin 2 /3	 (33) 

hD 3u5 dJi	 h 

2GMR2K 
—	 a [ cos 2a(1 + cos 2 8) sin /J cos /! + sin 2a cos /3 cos 2Ji] 

h 

3GM 
—	 (cos /i cos a - sin i/i sin a cos /3) (sin /i cos a + cos tp sin a cos /3) 

hD3u4
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neglecting the terms involving J (dh/d']i), K (dh/d/i). Now u = GM/h 2 + A sin Ji+ B cos '&, with h, A, B constants 

of the motion for f=K=O,cl=O,D=oo, so that v=du/dL/J=A cosiji — B sint/J. 'We define v=du/dJi 

A cos /i - B sin /J in a subsequent analysis. Applying the averaging process of Sec. IV yields 

'dh \
= 0	 (34) 

Thus, for nearly circular orbits, the angular momentum h = r2 h remains essentially constant. We are now 

in a position to find a relationship between a and /3 from Eqs. (29) and (31). Removing the < > signs one obtains 

i 
/ 
(K +	

WOO
sn 2a sin /3 da + I flh + cos /3	 -	 ___ K cos 2a+	

3Mh1°  

4G5M6R2D3 )	
G4M4R2	 2G5M6R2D3 sin

2 a)]	 = o

(35) 

with h constant from Eq. (34). Equation (35) becomes exact upon multiplication by the integrating factor sin 8. 

An integration yields

3Mh 10 - 2flh7 cos 
/3 + (i - K cos2a+	 sin2 a) sin2 /3	 constant	 (36) 

G 4M4R2	 2G5M6R2D3 

Accurate observations of a nearly circular satellite of the moon would yield values of a, /3, and h, from 

which one could obtain values of I and K from Eq. (36). 

In order to investigate the stability of a nearly circular polar orbit, let /3= /2 - a-, a- << 1, sin 8 = 1, 

cos /3 = a; thus, from Eqs. (29) and (31) 

do, 	 /	 3Mh10 \ 
jK+	 Isin 2a 

dJi	 h4	 \	
4G5M6R2D3J

(37) 

dci.	 1h3 

d,h -	 G2M2

14
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An integration, with o- = 0 for /1= Jj, yields

f2 h3 

= 2h7 çK+ 4G 5 M 6R 2D 3 ) -	 - G 2M 2 '1] G2M2	
(38) thu +cos	 -

G4M4R2 	 3M/a10 '\ {

	

(a0	
ch3 \1	

[2(aO 

so that

< GMR2 (	 3M/a10 
\\ 

kr 
=	

K+_ )	 (39) 

For a satellite near the Moon's surface, /z 2 GM!? R4  2 , < ji> 2/100 rad/min,	 27T/43000 

rad/min

I IKL> [K + 
_-	 (i \ 31 

Q	 L	 1\M) u\D) 
_j	

(430) [(3.5)1O + 6 . 10 -6 ]	 (1.5) 10-2 rad < 1 deg	 (40) 

thus, an almost circular polar orbit near the Moon's surface will deviate at most 1 deg from the polar plane. For 

a near circular polar orbit with r 2R,	 - 

< 430 
o1 = ------ [ (3.5)10 + 2 . 6 . 106 1 	 8 10 rad < 0.5 deg 

Since the preceding analysis requires an orbit of small eccentricity, it is necessary to study the radial 

motion of the satellite in order to determine the rate of change of the eccentricity, € = /12/GM J42 + B 2. We 

return now to Eq. (27). From r2 jJ = h, it follows that

(41) 

15



dr	 h dr_ hdu 

dtd/i do

d2r d2a	 Adu 
-	 ha2 

de2	 d&2	 dbdq
(42) 
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Thus, Eq. (27) becomes

du
V 

d,b

+ 	 8) = - U + --- - - - V 
dv	 GM 1 A 2 cos/3	 da	 3GMR2Ju2 1	 2 , 2 
d	 h2 h d	 ha	 d	

)	
h2	 (3 

3GMR2Kzs2 
+ -	 [cos 2a(cos 	 sin2 b cos 2 ,8) sirt2 a s2 JJ cos 3J 

GM 
+	 [1- 3(cosJi cos a- sin /isin a cos /3)2] 

h2D3a3 

The solution of Eq. (43) for / = K = 0, Q = 0, D = , is 

GM 
u = - + A sin.JJ + I? cos JJ 

V = A costjl - H sin JJ

(43) 

(44) 

16
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The parameters A and B are now varied, with the result that 

	

- -	 sin ,IJ— -	 V COS 
dA	 2GM A1 A 2 cos /3 (2da\	 2 ( - sin2Psin2/3) cos J' 

di - h	 db	 h d/i	 hu	 d/i	 h2 

3GMR2K 

	

+	 u2 [ cos 2a(cos 2 qi- sin 2 ] c082 /3) - sin 2a sin 2/J cos 31 Cos qj 
h2 

GM	 2 

	

+	 [1 - 3(cos /i cos a - sin /J sin a cos /3) 1 cos 
h2D3u3

(45) 

2 cos ,8 dB 2GM +1	 sin
	

u AA /3 h da	 3G	 2	 -	 sin2 ) sin /I
d - h3 d 	 h d	 hu	

)	
h2 

3GMR2K 

	

-	 u2{ cos 2a(cos 2 tJj _sin 2 iJi cos2 /3)_ sin 2a sin 2JJ cos /3] sin qJ 

h2 

GM	 2i 

	

-	 [1 - 3 (cos /i cos a - sin /J sin a cos /3) j sin 

h2D3u3 

One now substitutes dh/dt/i, as given by Eq. (33), and [hu 2 (da/dqi) + Q I , as given by Eq. (28), 

into Eqs. (45), with u = GM1h 2 + A sin tP + B cos Ji, du/dJi = v A cos - B sin qj. Neglecting higher powers 

2 of Ah /GM, Rh 
2
/GM, and applying the averaging process of Sec. IV, one obtains

17
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/dA	 G2M2R2 (2- 52 13B+K[ sin)	 —3 cos/3sin 2 aA + 	 /3) cos 2 aB]} 

2	
2 (3-5 cos2

 

I + 
Uk6 [_A sin 2acos/3+B '6cos2a_l 


	

D 3G 3 M 4	 4	 2)] 

I (46)1 

I
/dR \ = - G2M2R2 ç (2— — sin 2 /3)A +K [3 cos/3sin 2 a B + (3-5 cos2 8) cos 2aA]} 

	

0 1 	 2 

I
+

U/I6	
B sin 2 a	 M (1 + c082 a— 5 sin 2 a Cos 2 /3)] - 

	

D3G3M4	
cos /3 + 

[4	 2 

I
The terms in < dA/d,ti> , <dB/d 'Ii> involving I and K arose without the assumption of small eccentricity. 

I
The presence of the Earth's field on the satellite accounts for the nonsymmetric terms in Eqs. (46); the assump-

tion of small eccentricity was introduced to derive these terms. R. E. Roberson (Ref. 3) first obtained the critical 

angle given by sin 2 /3= 4/5 (see Eq. 46). 

Removing the < > signs, Eqs. (46) yield 

I
dA	 dB	 3G2M2R2 I	 A —+B —=—	 Kcos/3 sin 2a(A2+B2) 
d,h	 d/i	 0 

I
U/I6 r 15	 15 I	 +	 I— - sin 2 acos /3(A 2 - B 2)+ - (cos2 a— sin a cos2 /3) AB] 

D 3G 3M4 L 4	 2 

For an orbit which remains nearly polar, /3= 7T/2, COB /3.. 0, and 

1	
i F. Yagi, JPL, assisted n checking the results of this equation.
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dA	 dB

A —+8--

	

d/'	 15Mh6	 AR < 15 Mh6 
cos2cz 

A 2 +B 2	 2D3G3M4	 A2+B2	 4 D3G3M" 

In (A 2 + B2)	
1.1k6	

(48) 
(Il/f	 2 D3G3M4 

(A2+B2)	
exp 

/15 Mh6 l/i \ 
(\ D

3G 3M4) (A 2 + B) ' 

with A = A 0 , B = B 0 for t,L' = 0. 

Now the eccentricity of the orbit is given by E = h2/GM /A 2 + B 2 ; thus, 

(45 Mh6 

	

E	 0 exp	
D3G3M4	

(49) 

with co the initial eccentricity. The eccentricity will increase at most, by a factor of e when 15/4 1.1h 6/D 3G3 M4 l/' 
= 1, or I/i = 4/15 D 3C 3M4/Mh6 rad. For an orbit near the Moon's surface, h 2 GMR, and i/i = 4/15 (M/M)(D/R)3 

rad 1/3 . 105 rad. The time, T, associated with this increase of eccentricity is 

105 	 100 
-	 yr lyear	 (50) 
67r 60 . 24 . 365 

We have shown that a satellite of the Moon will tend to remain in an almost circular polar orbit for a 

considerable length of time.

19
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