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The research work being done under this NASA grant is divided 

into the following three categories: 

(1) An estimate of the radar return for the NASA Aerobee 

rocket shot at White Sands Missile Range. (wsMR) 

(2) Development of new scatter theories, modification and 

correlation of existing scatter theories, and application 

of the theories to moon-echo data for estimation of the 

surface features of the moon. 

() Acoustic- modeling of the lunar surface and correlation 

of the theoretical with both full scale and acoustical 

experimental results. 

AEROBEE ROCKET SHOT AT WSMR 

Dr. W. W. Koepsel and Mr. H. S. Hayre made a trip to JPL, 

Pasadena, to obtain the available details of the Aerobee rocket 

radar, and other system parameters including information on the 

mode of receiving and recording data. Moreover the plan of work 

and the progress made by that time were also discussed with Mr. Walter 

E. Brown, Jr. 

A theoretical estimate of radar scattering cross-section, 

pulse to pulse fading, range of fading (5_95), pulse stretching, 
and mean peak power returned has been made. It was based on the data 

on the surface roughness obtained from the area maps and information 

on the radar and receivers obtained from JPL. An acoustic model 

of the area of impact (wsMR) of the rocket was prepared. The 

acoustic experiment will be performed upon receipt of widebeamsonic 

transducers around the'first week Of September.: These transducers 

were ordered when all other efforts to obtain a wide beam pattern 

with various reflectors and collimeters proved unsuccessful.
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Further work on the experimental design of wide beam transducers will 

be limited to experimenting with very small hemispheres of barium 

titanate. An experimental (acoustic) verification of the theoretical 

estimate will then be made and a revised estimate will be submitted. 

SCATTER THEORY AND ESTIMATION OF LUNAR SURFACE FEATURES 

The Davies-Moore-Hayre model for rough terrain was used to 

derive a theoretical expression for radar scattering cross-section. 

This was applied to the moon echo power data reported by Hughes (1960) 

and Pettengill (1960). This resulted in a paper entitled "Radar 

Cross Section - Applied to Moon Return," which has been accepted 

for publication in the IRE Proceedings. Reprints of this article 

have not as yet been received. 

Another paper dealing with the determination of the quantized 

order of roughness for a surface, and its subsequent application to 

an estimate of the lunar surface near its center has been prepared. 

A copy of this paper is enclosed and it will be submitted for 

possible publication in a technical journal. 

The moon's surface was modeled acoustically using spun aluminum 

spheres of 16.1 centimeter outside diameter. The surface roughness 

was modeled using various sizes of sand, acrylic plastic spray and 

wrinkle varnish. The spheres were rotated around their axis, while 

the transmitter-receiver transducers were kept fixed at a position. 

The distance (range) of the spheres from the transducers was also 

varied from 1.47 meters to 4.26 meters in four steps. The results 

of this experiment are summarized in the enclosed abstract, which 

is being sent to TJRSI for approval for presentation at IRE/URSI 

meeting in October 1961 at Austin, Texas. Further experimental work 

(acoustic) will be carried on using 30.5 centimeter aluminum spheres 

as well as on 7.6 centimeter solid wooden balls.
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Folding of terrain elevation intoamplitudes lessthan or 

equal to a wavelength has also been studied and a report or a paper 

will be prepared soon. 

FUTURE RESEARCH 

The following phases of research will be continued in the 

future. 

(i) Estimation of the Lunar Surface 

a) Surface Roughness 

(a,1) Application of scatter theories to the available 

moon echo data 

(a.2) Acoustic simulation of the lunar surface 

b) Electrical Properties 

Reliable existing lunar echo data will be used to 

infer some probable estimate of the electrical 

properties of the lunar surface material 

(ii) White Sands Missile Range - Aerobee Rocket Shot 

Acoustic simulation of Aerobee radar shot and submittal 

of the University of New Mexico estimate prior to the 

actual shot. 

(iii) Estimation of Surface Roughness in General from Radar Data 

a) Statistical description of roughness 

b) Fading as an indicator of surface roughness 

c) Effect of range on fading 

d) Folding of terrain elevations into amplitudes less 

than or equal to a wavelength 

e) Roughness determination from return power fading and 

variance spectrum 

f) Specular-scatter component variation with various 

orders of roughness.
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It will be proposed that the radar data and television pictures 

of the moon taken by Ranger/s.be correlated to. improve the estimates 

of the roughness of the lunar surface. This work shall be proposed 

to be covered by supplementary appropriations for an extension of 

this grant.

/
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PUBLICATIONS 

1. "Radar Cross Section - Applied to Moon Return," by 

H. S. Hayre (already accepted for publication in I.R.E. 

Proceedings). 

2. "Surface Roughness of the Moon," by H. S. .Hayre, (submitted 

for possible publication). 

3. "Acoustic Simulation of Moon-Echoes," by H. S. Hayre, 

W. W. Koepsel, R. J. Tillery and D. W. Boone, (submitted 

for approval for presentation at the IRE/tJRSI fall meeting 

in October1961, at Austin, Texas. 

TRAVEL 

The following trips were made by the research personnel for 

purposes of discussion of the research work, attending NASA 

sponsored conferences and exchanging research notes with other 

people in this or allied fields: 

1. Dr. R. K. Moore attended the conference of the Advisory 

Group for Radio Experiments in Space at the University 

of Texas, Austin, Texas on February, 1961. 

2. Dr. W. W. Koepsel and Mr. H. S. Hayre travelled to JPL 

Pasadena, for discussions with Mr. W. E. Brown, Jr. 

3. Dr.. W. W. Koepsel attended AGRES meeting at Cambridge, 

Mass. inJune, 1961 and visited the Naval Research 

Laboratories in Washington, D. C., for discussion of lunar 

research being done there. 

4. Dr. R. K. Moore visited Ohio State University with 

Dr. W. W. Koepsel to discuss certain work on scattering 

conducted by their personnel.



SURFACE ROUGHNESS OF THE MOON*


By H. S. Hayre 

Electrical Engineering Department 


University of New Mexico 

ABSTRACT 

The radar scattering.cross-section obtained for the Davies-

Moore-Hayre model for rough terrain is shown to fit all .the 

existing reliable lunar radar scattering cross-section data as 

analyzed by this and other authors. It is also suggested that 

the angles of incidence for study of radar return from the moon's 

surface should be divided into three approximate ranges namely zero 
three to fifteen degrees and fifteen to ninety degrees. 

to three degrees The radar cross-section is then analyzed in each 

range of angles to estimate the order of roughness of the moon's* 

surface. 

Moore's separation technique for specular and scatter 

components is used to obtain a quantized description of almost 

smooth and rough terrains. The results so obtained are then compared 

with Evans' definition of a rough surface. 

This work is sponsored .by Na*ional .Aeronautics and Space 
Administration under grant NsGl29-610
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In recent years considerable interest has been aroused in the 

radar determination of the order of surface roughness of terrestrial 

bodies. In particular, quite a few (Evans 1960, Hayre 1961, Hughes 

1960, Leadabrand 1960,.Pettengill 1960) attempts have been made 

recently using the results of monostatic and bistatic radar reception 

of lunar echoes, to determine the roughness of the visible lunar 

surface. This paper attempts to quantize the word "rough" in terms 

of statistical properties of a surface. This definition is applied 

to the moon return. 

Surfaces are often referred toas quasi-smooth, smooth, almost 

smooth, rough and very rough, etc., but rarely is the roughness 

specified quantitatively. This is closely related to separation of 

specular and scatter return of electromagnetic waves from . a surface, 

where specular return is defined as the return from a mirror-like 

perfectly smooth surface, and the scatter as that from a non-smooth 

surface. In practice, the return from a rough surface can be said 

to be made up of both specular and scatter components. It is from 

this that some inference (Moore 1957, Senior 1960) can be made about 

the natureof roughness. Any relative motion of the radar and the 

target area causes fading of the returned signal. The fading spectrum 

has also been used to detect the order of roughness, as fading 

statistics of signal return from a particular terrain are determined 

by the statistical description of the surface, the relative motion, 

the carrier frequency and other radar parameters. 

The radar scattering cross-section (€ ) is also employed in 

the prediction of surface roughness of the target terrain. The plot 

of radar scattering cross-section versus the angle of incidence (@)



tends to be flat for very rough surfaces. It will be shown later 

that this curve approaches cos 2 Q variation in the limit for rough 

surfaces. For most surfaces, the 6 vs. 0 curve becomes steep 

as the angle of incidence approaches zero (vertical incidence) as 

shown by various authors (Dye 1959, Hayre and Moore 1961). 

Some authors (Evans 1960, 1961, Leadabrand 1960, Senior 1960) 

have suggested that the center portion of the visible surface of 

the moon is quasi-smooth, because approximately fifty percent of 

the echo power is returned from a central region, approximately 

210 miles in diameter. 

A study of some recent moon echo results (Evans 1960, 1961, 

Pettengil 1960) seems to suggest that it may be necessary to analyze 

the variation of radar cross-section with the angle of incidence in 

three different ranges. This is necessitated because small changes 

in 9 correspond to very large changes in distance from the center 

of the moon surface. For example, 9 =	 + B, and = 17 minutes max 

where 2 O( and 2B are the angles subtended by an incremental ring 

of the illuminated area on the moon surface at the observation point 

on the earth and the center of the moon respectively. The angle of 

incidence (9) varies from zero to ninety degrees as the angle o< 

varies from zero to 17 minutes, and the corresponding radius from 

the center of the visible surface to the illuminated area changes 

from zero to the radius of the moon. This would then imply that 

one would associate different roughness characteristics with each 

range of angles as discussed later in this article. 

If the range is far greater than the size of the largest 

perturbation of the target terrain, the change in the magnitude of 

the field produced at the receiving antenna due to variation with
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range of the amplitude of individual facet returns is negligible, 

while the corresponding effect on the phase variation between 

returns from separate facets will be predominant.. In theoretical 

analysis of pulse radar return, it is sometimes assumed (Brown 1960) 

that the surface perturbations can be "folded" into 'irregularities, 

whose magnitudes are of the order of a wavelength or less.. In case 

of moon study, with radar frequency of 1 KMC, the returned signal 

from the top of a crater rim, 300 meters above the average lunar 

surface, would be essentially similar to that returned from the 

average surface.. This seems to suggest that the dividing line 

between rough and very rough surface lies around irregularities of 

the order of one half wavelength.. The discussion of this subject 

in the following paragraphs shows that this transition occurs in 

the range of values of	 /7' from approximately 0.1125 to 0.125. 

Various models have so far been used to predict the roughness 

of the target terrain from the radar return data.. The Davies-Moore-

Hayre model (Hayre and Moore 1961) uses the experimental auto-

covariance of the elevations and their probability density function, 

in applying the Kirchhoff-Hygens' principle.. Certain standard 

assumptions about perfect conductivity, isotropic scatterers, near-

vertical incidence and no part of the terrain being shadowed by any 

other part, etc.., were employed.. Contour maps were used to calculate 

the autocovariance functions. This resulted in the following 

expression for the radar scattering cross-section 

2..	
2..	 2. 

=	 ir	 0 CO5 3v0) € (-4 -&	 cos S)

-


	

[ (4t i ZZ5e +	 (1)
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where	 = standard deviation of elevation of points on the 

surface above the mean surface, 

= wavelength 

k	 wave number, 

9 = angle of incidence 

B = roughness characteristic constant (in auto-

covariance function) 

In case of an area with large value for the standard deviation, 

the scattering cross-section 6-0 , in db will be essentially 

proportional to Cos 2©, as is evident from.-Equation (1), because 

log (Li 172 71 B 2 /? 2 ) (9cos 29/Siri9) will be negligible as compared to 

-4k 2 6 2cos 29. Similarly, the contribution from the log of the 

infinite sum, will also be negligible. 

Some other authors (Leadabrand 1960, .Pettengill 1960) have 
asserted that the resulting cos 2 O variation is a good £ it for the 

lunar radar scattering cross-section (db) for incident angles 

greater than 13-15 degrees. 

Roughness may be specified quantitatively in terms of standard 

deviation (6 ) and autocovarjance constant.(B), maximum and minimum 

size of the surface perturbations or a roughness coefficient 

contained in the probability density function for the areas at a 

particular elevation (Brown, 60). .A search of the literature on 

the subject shows that an order of roughness separating an 'almost 

smooth' and a rough terrain has not been specified. For instance, 

Evans (1960) assumes that a surface is rough if the size of its 

perturbations are greater than one eighth of a wavelength. The



distribution of such perturbation above and below this size is not 

discussed.. Moore (1957) uses an interesting technique to separate 

the specular and scatter radar return components. The reduction of 

the specular component with increasing roughness may be used to 

indicate a transitional order of roughness between an almost smooth 

surface and a rough surface. Moore lists a separation factor 'a' 

which shows reduction in specular due to energy going into scatter, 

equal to exp. (-2k 2	 When the exponent 2k2 ,2 becomes unity, 

the factor 'a' reduces to 068. The value of 6 /A corresponding 

to this reduction in specular component is 0.1125, and it is comparable 

with the assumed value given by Evans 

The scattering cross-section versus the angle of incidence 

curve may also be studied for some indication of a roughness 

transition zone between 'almost smooth' and rough surfaces. Davies-

Moore-Hayre's model for roughness terrain, (approximately described 

by Equation (1) for scattering cross-section ) passes in the limit as 

to an impulse function .P specular	 (0 = o 6 = o). The scatter-

ing cross-section curve is very steep near zero angle of incidence 

for a slightly rough surface. Now as the roughness is iricresed, 

this curve becomes flatter but never reaches a horizontal line. For 

given dielectric properties, some of these curves of 0-0 vs. 9 for 

varying degrees of roughness, cross each other in the range of 

angles between zero and about ten degrees. The constants 	 and B 

are indicative of the order of roughness of a surface. A small 6 

and a large B represent a surface that appears smooth to the eye and 

"relatively smooth" to the radar while a comparatively large 6 and a 

small B would represent a "relatively rough" surface.
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The above discussion suggests that the specification of 

standard deviation and the autocovariance constant, B, in terms of 

the wavelength used, is necessary for qualifying the target terrain 

as "rough" or "very rough." All other such adjectives as quasi-

smooth etc., would thus be eliminated. 

As previously suggested (Hayre 1961), the ratio of standard 

deviation to the wavelength (/?) of approximately 0.1 and B/7 

of 1.0 correspond.tothe lunar radar cross-section calculated from 

radar data taken at wavelength of 10 cm, using a pulse length of 5 

micro seconds (Hughes 1960). 

The suggestion of analysis of lunar radar return data by 

ranges of angle of incidence, may now be applied to the moon echo 

data collected and analyzed by various authors so far (Evans 1960, 
1961, Hugfors 1960, Hughes 1960, Leadebrand 1960, Pettengill 1960). 

The general expression for radar scattering cross-section (1) not 

only fits the approximate expressions calculated for various ranges 

of angles such as listed below, but also gives expected results 

in the range of angle from zero to three degrees: 

	

exp 	 G)	 ex-p ( to Sin o)

(2) 

	

c co5
	

+a'r	 \4°ecJO	 (3) 

Equation (i) can be approximated by the following expression

31a 
2. 

O (6/AP)	 [ 2 -	 J 
fo'	 Q9.3O	

(Lb) 

as cos Q and sin .G are essentially unity and Q respectively for this 

range of angles.



Conclusions 

It was recently shown (Hayre 1961) that the radar scattering 

cross-section expression (1) derived from the Davies-Moore-Hayre 

model. (1961) fits the experimental moon echo data taken by Hughes 

(1960) for 61? = 0.1 and B/? = 1.0 in the range of angles of 

incidence from 3 to 140 , Later onPettengill '< 1960), approximated 

his experimental lunar scattering cross-section variation by 

exp.(-10.1.sin o). Other results obtained by Evans. (1960) at 2.5 
meter wavelength, Leadabrand (1960) at 0,75 meter wavelength, and 

Trexler (1958) at 1.5 meter wavelength indicate that the above results 

concerning the shape and distribution of received power versus the 

lag time are reasonable. The wavelengths corresponding to the 

frequencies used by Hughes and Pettengill are 0.1 and 0.682 meter 

respectively. The same power distribution for more than one 

frequency can only be explained by the fact that a certain given 

rough surface may give the same reflected power because the 

scattered power vs. the order of roughness has maxima and minima in 

it (Born et-al 1959). In view of this, let us be rather conservative 

and select the largest wavelength. (2.5 meter) from this group. Now 

if the criterion mentioned in the beginning of this paper and 

paragraph is used, it would seem that the central portion of the 

visible lunar surface is. indeed rough. The standard deviation of 

this surface may be of the order of 0.1 x 2.5 = 0.25 meters. The 

autocovariance constant.B may be approximately 2.5 or so. These 

numbers may be changed, if one wants tobe further conservative and 

employ a safety factor. 

Nothing may be inferred about the presence or absence of 

dust layers, if any, from the above analysis. The above estimate

Fe, 
1.SJ 



,of the standard deviation of the central lunar surface, included in 

about one-tenth radius of the moon, does seem to give an indication 

that crevices deeper than two times the standard deviation (0,5 
meters) may only exist in small number. The probability of existance 

of such crevices would be less than approximately 4.55%, if the 

distribution of surface perturbations above and below the average 

lunar surface is assumed to be normal,. Further work on the order 

of roughness of the moon's surface is very essential for the 

successful instrumentation of the soft lunar landing surveyor.
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-	 ABSTRACT 

ACOUSTIC SIMULATION OF MOONECHOES* 

By 

H. S. HayreF W. W. .Koepsel	 R. J. Tillery1 

and D. W. Boone 2 

Linear and non-linear acoustic modeling of radar return from 

terrain has been successfully done for the last two years at the 

University of New.-Mexico. Statistical information such as range of 

fading, mean power, rate of fading etc., are parameters determined 

by these experiments in addition to the radar scattering cross 

section. These techniques were employed to model the moon surface 

on a set of 16.1 centimeter diameter aluminum spheres. The roughness 

of surface features was modeled on a scale relative to that found 

by telescope. The order of roughness was varied from smooth polished 

surface to that with sand particles of sizes up to 1.168 millimeters 

glued on it. Four values for the range of the sphere from the trans-

mitting-receiving transducers were used. These were 18.24, 30,64, 
243,10 and 52 . 94 radii of the sphere representing the moon. The range 

scale differed from the wavelength scale as was required by the size 

of the acoustic tank, the transducer and the power limitation of 

the system. The transducers were kept stationary, while the spheres 

were rotated around their axes, in order to simulate the relative 

rotation of the earth with respect to the moon. 

*
This work is supported by National Aeronautics and Space 

Administration under grant N5G 129-61. 
'Electrical Engineering Department, University of New Mexico. 

2 Secondary School Teacher,. Participant, National Science 
Foundation, Engineering Research Program.



Incident pulses of 4A1 seconds duration at 1.02 mc with 20 PPS 

were used and the return pulse was amplified for scope presentation. 

A strip camera was used to record this presentation of data. The 

reduction and analysis of this data resulted in the following 

observations: 

(i) The average range of fading seems to increase with an 

increased order of surface roughness. There is some indication of 

its gradual increase with range as well. 

(ii) The average range of fading for the return signals from 

the entire sphere at a fixed range is approximately 15 db, which was 

reported* as.a typical average fading range for a wide variety of 

terrains.

(iii) More than 50 of the power return is contained in the 

return from the region bounded by 0.3-0.4 radius in the case of 

spheres with acrylic plastic layer ( 0.0121-0,0 254 mm) and wrinkle 
paint (0.126-0.203 mm). 

(iv) The range of fading seems to increase from 4.0 ± 0.45 db 
at maximum surface roughness of 0.0127 mm to 11 ± 4.6 db at an order 
of maximum surface roughness of 1.168 mm. 

Further work on smaller and larger size spheres with increased 

order of roughness is in progress at the University of New Mexico, 

*
Edison, A. R., R. K. Moore and B. D. Warner, "Radar Return 

Measured at Near Vertical Incidence, IRE Trans. PGAP. Ap. 8, No. 3 
pp. 246-254, May 1960.
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