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SUMMARY

The first part of this paper pertalns to the estimation of subsonie
rotary stability derilvatives of wings. The unsteady potential flow -
problem is solved by a superposition of steady flow solutions. Numerical
results for the damping coefficlients of triangular wings are presented
as functions of aspect ratio and Mach number, and are compared with
experimental results over the Mach number range O to 1.

In the second part, experimental results are used to point out a
close correlation between the nonlinear variations with angle of attack
of the static pltching-moment curve slope and the damping-in-pitch
coefficient. The underlying basis for the correlation is found as a
result of an analysis In which the indicial functlon concept and the
principle of superposition are adapted to apply to the nonlinear problem.

The form of the result suggests a method of estimating nonlinear damping

coefflcients from results of static wind-tunnel measurements.
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XyY sz
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1ift coefficlent, Uy
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pitching-moment coefficient,

pitching moment
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Fourier transform, F[£(t)] =f elwbe(t)at

o
v
Mach numb —_
ch n er,am

reference srea (equals wing area in part

f1light speed

speed of sound in free stream

wing root chord
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+time

dimensionless spanwise distance, %
e}
perturbation normal velocity at plane of
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dimensionless location of center of pressure of 1ift due

to angle of attack, }é-&
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3{!

a angle of attack
oty mean angle of attack
=73 oscillation amplitude
B 1-M2
6 angle of pitch
P mass density.of free stream
0] perburbation velocity potential
dp g
Px s PyxsELC. % 52 ete.
0 correction potential
v steady-state potential due to unit pltching velocity
gbout y axis
X steady-state potential due to unit angle of attack
W circular frequency
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When a, @, and g are used as subscripts with a 1ift or moment coefficient,

a dimensionless derivative is indlcated; thus
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ESTIMATTION OF ROTARY STABILITY DERIVATIVES
AT SUBSONIC AND TRANSONIC SPEEDS
By Murray Tobak¥* and Henry C. Lessing¥®
National Aeronautics and Space Administration

Ames Research Center
Moffett Fileld, Calif.

1. INTRODUCTION

Tt 1s now generally recognized that modern aircraft, particularly
tallless aircraft, can experience a significant loss of damping in the
short-period pltching mode at transonic speeds. This loss has been
traced to a reduction or even a change in sign of the damping~-in-pitch
parameter Cmq + Cmd' On the supersonic side of the transonic speed
range a falrly complete understanding of the mechanism underlying the
reduction of pitch damping has been made possible by the rapid develop-
ment of theory in this range (cf. (1) and attendant bibliography).

It is known, however, that the phenomena actually have their origins in
the subsonic speed range; unfortunately, the great difficulty of the
subsonic theoretical problem for finite-span wings has prevented a
detalled study of these origins. Moreover, in the transonic speed range
itself, and in fact, at all speeds, when flight conditions depart from
those implicit in the range of applicabillity of a linearized theory, it
is known that the aerodynamic forces and moments can become highly non-
linear functions of angle of attack. Here again, the great difficulty
of the theoretical problem has prevented our gaining an understandigg

of pitch-damping behavior under such circumstances. While 1t mey not be
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feasible to obtain explicit theoretical solutions in these cases,.the
possibility remains to formulate the problems so they relate closely to
analogous problems in steady flow. The aerodynamics of steady flows
being of fundamental 1mportance In alrcraft design, there exists a far
greater fund of knowledge, both theoretical and experimental, relating
to this fleld than exists for unsteady flows. Hence, if it 1s possible
to relste an unsteady flow problem to an analogous problem in steady
flow, one has the hope of bringing this fund of knowledge to bear.

This possibility will be examined for the two problems mentioned above;
first, in the estimation by linear theory of pitch-damping coefficients
of wings flylng at subsonic speeds; second, in the estimation of pitch-
damping coefficients when the aerodynamic forces and moments are non-

linear functions of angle of attack.

2. ESTIMATION OF CL&.AND Cm&' FOR WINGS AT SUBSONIC SPEEDS

Consider the first problem, the estimstion of pitech damping of
wings flying at subsonlc speeds. As 1s well known, to a first order in
frequency the pitch-damping coefficient is composed of two parameters;
Cmq: the pitching-moment coefficient proportional to constant pitching
veloclty, and Cm&, the pltching-moment coefficient proportional to
constant vertical acceleration. Now the analysis of Cmq alfeady
corresponds to that of a steady flow, namely the flow over a wing cambered
and twisted to have a downwash distribution linearly dependent on chord-
wise distance, x. Hence, all attention can be focused on the remaining

parameter, Cpg .



2.1 Solution to Potential Egquation

To reduce the calculation for Cmd to a steady flow problem, it is
possible to adapt a simple device previously used extensively in calcu-
lating Cmd at supersonic speed. The device was first introduced by
Ribner and Malvestuto (2), who in turn credit it to C. S. Gardner.

A solution is sought to the unsteady wave equatilon

Bz¢xx T Py F Py - ﬁé%’th - gi? Ppp = O (1)

subject to the boundary conditions in the 2z = O plane

w(x,y,0) = 9,(x,y,0) = -Vt , on the wing

(2)
Lp _ &

1
@ =y\P%t V.@£> =0, off the wing

Z=0

Gardner has shown that a solution to Eq. (1) sultable for supersonic
speed can be built of a combination of steady flow potentials; namely the
. potential due to steady unit pitching veloecity V, and the potential due

to steady unit angle of attack X, in the combination shown in Eq. (3)‘

q’(x:Y:z)t) = - l\é_z g%g \lfq.—zl(x,vY;z) +a (t + \7—5}25 Xa,::L(X:Y;Z)
+ 0(x,y,2) . (3)

The adaptation of Eq. (3) to make it applicable to subsonic speeds consists
only in adding a third steady flow potential, &c. The necessity of this
addition will be evident from inspection of the loading coefficient

expression.

2.2 Ioadlng Coefficlent

The loading on the wing is obtained from Bernoulll's equation

% = vlt liq)x(x:y,vo)o) + % (Pt(x)y,'o:o):l (h)



and this leads to
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evaluated at t = 0. DNow if the flight speed is supersonic and the wing

has supersonic trailing edges, the wake 1s of no concern in calculating
loading on the wing since it cannot affect conditions on. the wing. In
these circumstances, the first three terms in Eq. (5) constitute the
solution for loading on the wing. For subsonic .speeds, however, the
Kutta condition must be invoked; this entalls that loading be zero at the
wing trailing edge, and of course, also iﬁ the wake. This condi£ion is
fulfilled by the first two terms in Eq. (5) but not by X ifself.

Writing X as

v M .
Kegmq = — = (t,y),_,d¢ (6)
o=1 T ), le(y) o=1"" _

one'sees that X 1is a function of ¥ in the wake, retaining at each
station y the value it has at the wing trailing edge. This value is
direcély §roportional to the span loading‘due to angie of attack, which
may be presumed to be known. Hence, the potential &, is added so that
its loading contribution will cancel a spurious but knoﬁn loading in the
wake;éontributed by X. In addition, since the boundary condition for
downwdsh on the wing.is already sétisfied by V¥ and X alone, a second
condition to be fulfilled by de is that 30./3z be zero at the wing

surface. These two conditions suffice to determine the additional loading.

2.3 Solution for Triangular Wing
To avoid excessive mathematical development, it is merely stated here
that after some manipulatién, the problem for the correction loading can

be reduced to finding the loading corresponding to a known downwash



dependent only on spanwise distance, y. Then by use of the reverse flow
theorem, the 1lift and moment contributions are found relatively simply
by spanwise integrations of this downwash distribution, multiplied by the
reverse-flow span loadings due to angle of attack and pitching velocity.
The form of the result as it applies to the triangular wing is given

in Eq. (7).

1
Crg_+ ey, -f g(u)L(u)g o=qdu
de

Op 1
fg at f (g,n)F -y +f g(u)L(u)R q=1du
J fo) b

C1g,
> (T)

ogé?

where

L(u R,q=1 U/W Q” R ,q=1 ae , axis at apex

and the subscript o on the stability derivatives 1s meant to indicate
that the terms are to be evaluated for an axis located at the wing apex.
The subscripts F and R distinguish between loadings in forward and

reverse flow, respectively.

2.4 Approximafe Steady-State Loadings

In the form given, Eq. (7) is exact. It will be noted that the
calculations Involve fhe steady-state loadings due to angle of ;ttack
and pitching velocity, and the corresponding span loadings in reverse
flow. Hence, the stated objective has been achieved. To complete the

calculations, it would of course be most advisable to use experimental



data for these quantities, or secoﬁdly, exact theoretical solutionms.

Since probably, neither will be available in sufficient detail, approxi--
mations mist be introduced at this stage. The calculation‘ls- a sensitive’
one, especially for'pitching moment, in that it involves differences

of numbers of approximately equal size. Therefore, in introducing
approximate loadings it is advisable to use a set of loadings that is

at least internally consistent, that 1is, a sef that satisfles the reverse-
flow theorem. In calculations for the triangular wing, it is possible

to achleve this aim by_é genéralization of a technique introduced by'
Lomax and Sluder (3); namely, it is assumed that the loadings are those
glven by slender-wing theory, multiplied by a chordwise correction factor.
The correction factor alters the slender-wing loadings bdth to account

for compressibility and to comply with the Kutta condit;oﬁ. The loadings

have the form given in Eq. (8).

. I
% f<:—o>§; [:WF(X) m]

v = wp(x) % (x,7)p
(8)

]
li

“ -y o e ()

wp(x) @ % (x,¥)R

. J
Tt will be noted that by virtue of the form of Egs. (8), the integrand

of the reverse-flow relation will form a perfect differential. The
integration in X oﬁer the chord is then.identically zero since £ ,15
zero at the trailing edge and the square root is zero at the leading
edge . Hehce satisfaction of the reverse-flow theorem 1s insured in a
very simple way. The.chordwise correction factor f(x/co) may be thained

from results presented in (3). .



Integrating the first of Egs. (8) to obtain the steady-state

stability derivatives in forward flow yields

1o
C o, '1 > (9

. __3 13
-Cm%— Qmjggf(g)de -

Note that by virtue of Eqs.(8), Cqu a.nd.lcma are related simply ‘by"the
. o] v

factor 3/2. It has also been found that the center of Iﬁfessuré of the
11ft due to pitching about the apex is given very closely by 9/8 times the

center of pressure of the 1ift due to angle of attack;* that 1is

Cry, = = 3 Cug,
cm&z_9cm°"o (10)
cho_-é Clq,

Inserting Eqs. (8), (9) and (10) in Egs. (7) leads to the following

expressioné for CI& and C%' .

Lz '
5 XGCIu + CL(g)

&

4 (11)
- -]% Xq?Cre + Cmo(8)

d

where

P ,
-f g(u)L(u)R’w__ldu

o

l . -
LL‘ g(u)L(u)R, q:l,apexdu

Curves of the parameters CI('L/ ( ;tA/2), Xq, and the correction terms

Q
H
~~ .
R
~
]

1]
~
il

*This result is also obtained using Lawrence's method (4) of computing
the steady-state loadings. ' '



B2cr(g)/(na/2), BZCmO(g)/(nA/Q) are presented on Figs. 1 and 2.
From these results, all the stability derlvatives can:be obtained for

trisngular wings within the reduced aspect ratio range 0 < PA < .,

2.5 Empirical dorrections

Observe that by virtue aqus.(lO) the expressions for the stability
derivatives have been put almost completely in terms of CIu and Xq. It
is to be expected that an improvement in accuracy and, for example, at
least a partial account of wing—bodyvihterference effects could be
realized by replacing ‘Clu apd ia wjth values determined f?om experi-

ments. The given results can be corrected in the followipg'way. Iet

laep o
CLO"th ] _ ‘& .
N Teexp | (12)
Xoh
Then ‘ : - ; w :
orq, = 3 “%CI% ]
Cmqo=- “Vax%h Togn I
| & (13)
Crg = ¥ [% v£a£hCLmth +‘“CL(g)th}
Cm&o = pv [- 2 vxdth CIU£ + pcmo(g)th]

)

These are the results which will be compared with results of experiments.- '

2.6 Comparison with Experiments
The theory as computed and corrected from Egs. (13) is compared with
experimental data for triangular wings of aspect ratio l 45, 2 and h on

Figs 3 to 5. Experimental results for the A = 1. 45 wing were obtained



at the Swedish Aeronautical Research Institute (5); those for the A =2
. T

and 4 wings, at the Ames Research Center (6), (7). On each figure, the
damping coefficlent as defined here is shown multiplied by a factor which
‘converts it to comply with the defining units used in the experiment. It
will be observed that in all three cases the accuracy of the theory is
adequate. Note that the theory 1s capable of showing the reversal in
trend of the aanming coefflcient that occurs at high subsonic Mach numbers;
however, the reversal occurs sooner aﬁd more abruptly than predicted.
3. DAMPING IN PITCH IN THE PRESENCE OF NONLINEAR STEADY-STATE FORCES

AND MOMENTS '

The second problem mentloned previously will now be considered;
namely, the estimation of pitch-damping coefficients when the aerodynamic
forces and moments are nonlinear functions of ahgle of attack.  The
procedure will again be to formulate the problem to relate as closely as
possible to conditlions in steady flow. Evidence of the existence of such
a relationship between steady and unsteady flow can be found in the liter-
ature; several experimental investigators (e.g., (8), (9)) have noted that
when the static stability derivative Cma is a nonlinear function of
angle of attack, the pitch-damping derivative Cmq + Cp; 1s also nonlinear.
More specifically, as indicated in Fig. 6, an increase (decrease) in
static stability is accompanied by a decrease (increase) in pitch damping.
Experimental results for several radically different configurations have
confirmed the general nature of this relationship and the results, when
cross plotted, in most cases have exhibited the linear correlation also

shown in Fig. 6 and expressed as Eq. (14):

Cmg + Cmg = A + Blmy (1k)
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However, this information by itself is insufficient for the purpose of
developing a rational estimation procedure, and the physical basis for

such a relationship must be established.

3.1 The Indicial Response

ZIn the analysis to follow, the physical basls for the relationship
between pltch-damping and static stability will be illustrated through
use of the concept of the indicial response. The indielal response of
a system, by definition, is the response of the system to a disturbance
in the form of a step function. As an illustration, Fig. 7 shows a
step change in angle of attack Aa. The indicial response which will
be considered, also shown, is the resulting moment coefficient variation
divided by the increment in angle of attack. It will be noted that the
indicial response is not zero at time zero, but has a starting value
which may be computed rather simply (e.g., (10)) from considerations of
the initial momentum change imparted to the air immediatel& adjacent to
the surface of the aerodynamic body. The response then proceeds to
change with time, eventually reaching its steady-state value whici has
been indicafed to be a function of angle of attack.

The following assumptions will be made concerning the indlecial
vresponse: First, that the total resﬁonse can be divided logically into
two individual responses as indicated in the last sketch of Fig. 7.

The first response is associated with the starting value, and falls td
zero as the finite extent of the body alleviates the momentum initially
imparted to the air. The second response is associated with the develop-
ment of the flow pattern leading to the steady-state value. The starting

value will be assumed independent of angle of attack. This assumption
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1s consilstent with the results of linearized (10) and second-order
serodynamic theory for planar bodies (wings) and will be assumed to

hold in general. Finally, the form of the response associated with the
nonlinear steady-state value will be assumed to be independent of the
nonlinearity. This assumption is based on the intultive reasoning that
the propagation of flow disturbances, that is, the mechanism by means of
which the steady-state loading is attained, is independent of the form of
the loading. The importance of the assumption lies in the fact that it
retains the characteristic of the response of a linear system which permits
the principle of superposition to be applied (11). With these assumptions

the indiclal response may be written as

Y A
n (4,0) = 28 (0)2(t) + B (=a)ea(t) (25)
where the limits of the functions fy and f» are Zero and unity.

3.2 The Superposition Integral

In Fig. 8 an arbitrary angle-of-attack variation is shown, begimning
with an initial value o3 which has existed for an infinite period prior
to time "zero." If the continuous variation is approximsted by a series
of step functions, then associated with each step is an indicial response
such as previously discussed. The resulting moment variation 1s then

given by the sum of the indicial responses,

1

Cp(t)

Ca(0) + B (t-t3,a1) [0g-0a] + 2n (4-t2,00) [0a-ce] + - - -

n

m(0) + ) 2B (t-tn,cn)en | ()
n

where each response is evaluated at the appropriate instant of time (t—tn)

relative to its inception. Passing to the limit of an infinitesimal step
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size then leads to Eq. (17):°

t
Cm(t) = Cw(0) +f Cmg, (t-7, (7)) dZ(T') dr (17)
o T : -

Again one'should note that the use of the superposition integral is possible
only as a result of assuming an indicial response of unique form, contalning
the nonlinearity associated with o only as a multiplicative factor

determining the magnitude of the response.

3.3 Determination of Cpg and Cmq

As a result of the preceding development, it is possible to consider -
separately the two parameters qu and Cps which make up the total piteh
damping. Attention will be focused here on Cm&, the pitchling-moment
coefficient proportional to vertical acceleration. The motion ﬁhich leads
to a ﬁoment proportional to a but not to g 1s shown in Fig. 9 - harmonic
plunging oscillations of an aerodynamic body at constant inclination to

the mean flight path. The angle-of-attack variation 1s then given by

a(t) = ap + apsin wt (18)
a harmonic variation of angle of attack of amplitude ao about a mean
value ap. If now the steady-state value of the indicial response is

expanded in a Taylor series about the mean angle of attack am,'

2 .
() = Onelem) + 2% () [amom] + & 2% () ama]” + .+ . . (19)

all the necessary equations have been developed for computing the total
moment response to this motion. Substitution of Egs. (15) and (19) in

Eq. (17) and a little manipulation yields
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t
004(8) = Cyt) - x(0) = Co(0) [ paltom) ET o
) o}

t t
+ af fo(t-T) aa(7) ar + bf fo(t-T) g_gf:(r-r_) ar
o o

ar a
¢ aa®(r)
+ dl £o(t-7) — at + . . . (20)
where 2
2
2 = Cnglom) - om % (o) + 2 LT (qy)

2
b = % A, (am) - X E-SEQ (om) + -

da 2 a2
a2Cp,

1
d ==
6 ao®

(am) + -«

and ACp(t) 1s the time-varying moment caused only by a time variation

of angle of attack . Any mean value of the moment has been subtracted
as shown. If now the angle~of-attack varlation gilven by Eq. (18) is
introduced, ACH(t) can be determined by a straightforward mtqgration of
Eq. (20). It is evident that because of the nonlinearity.of fhe steady-
state response, the response ACp(t) to the harmonic angle of attack will
not itself be harmonic, but will be instead a periodic function made up
of components exhibiting some range of frequencles. However, only those
components are of interest which are characterized by the frequency w,
since only those components are capable of dolng work, or of being
interpreted as an aerodynamic spring or aerodynamic mass. Application of
the Fourier transform to ACm(t) yilelds the desired components. A some=-
what simpler and more direct approach is the applica.tion of the Laplace
transform (11) to Eq. (20); reduction to the Fourier variable, w, then
ylelds the desired components directly. Either approach is straightforward

and need not be detailed here. The final result is
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Ffiff?(f)im] - Gy + 1[0 (O)F2(w) - O Fo(w)]  (21)
where “ | ,
. 2 2
Cmd'e = Cmd‘(d,m),'l" a—;—— ddzzmd‘ (d,m) + 4 e . . (22)
FﬂQ)=/w}ﬂtkum&
() : :

Fa(u) = [ [1-£a(t)]etbas
(o]

The first term in Eq. (21) 1s a moment in phase with oscillatory angle of
attack, and is therefore equivalent to an effectlve aefbdynamié_spfingj

hence the similarity in the notation to the usual desighationﬂof;aero- :

dynamic spring, Cp,. The second term'is complex through the Fourier trans- -

forms Fl(w) and Fz(w). The imaginary part is in phase with the rate of
change of angle of attack, and is therefore proportional to Cmd. " The real
part is in phase with acceleration and can thus be identifled as an aero-
dynamic mass. ?o the first-order in frequency the aerodynamic mass
contribution to the moment is zero. Also to the first order in

frequency, Cm&‘ can be - expressed as

Cg, = C + Dl T T (@3)

where

Q
il

_%%Jmlﬁﬂﬂ%

. |
.-Tlﬁlfm@nﬁv

lw)
i

The derivative Cma is thus seen to have the linear correlation Porm

originally given by Eq. (lh) ‘but the correlation relates to the effective

value Cmye rather than the static value Crgy ‘Tt will be seen later
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that this form is the correct one. The constants C and D are functions
of the starting value of the indicial response and integrals of the
functions £,(t) and £5(t) which determine the form of ’the indicial
response. The integrals are equal to the areas shown in Fig. 10.

Thé reader will note that the effective static stability Cmge giveﬁ
by Eq. (22) is the value which would be obtained by means of an experimental
apparatus wherein the motion is inexorably forced and the aerodynamic
moment component in phase with the angle of attack is measured. It can
also be shown by the Kryloff-Bogoliuboff method (12) of nonlinear mechanics
to be the value wﬁich would be 'obtaiped from frequency measurements of &
tuned spparatus, that is, an apparatus which is forced to oscillate at
its resonant frequemcy. It was by the latter method that the data to be
presented sﬁbseq_uently were obtailned.

A similar analysis for the derivative Cmq' leads to the result

Cag = Omg_(en) (24)

which states that, to first order in frequency, Cmq is equal to the

effective steady-state value (‘,'mqe existing at the mean angle of attack oy.

3.4 Discussion
From the previous development it is evident that the total pitch

damping, as given by the sum of Egs. (23) and (24),

%+%=%e+c+m%e | (25)
should exhibit a linear correlation only if Cmqe is independent of angle .
of attack, varies with angle of attack in the same manner as Cmae, or is
negligibly small. It is noted that those configurations investigated to

date which have failed to exhibit a linear correlation have all been winged
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configurations which would be expected to have a sizable value of Cmq
relative to. Cm&- Bodies of revolution, which would be expected to have

a much smaller value of Cmq, have all correlated rather well. A typlcal
example 1s shown in Fig. 11 where the pitch damping and the effective value
of static stability are shown as functions of mean angle of attack for
three oscillation amplitudes. These are data recently obtained at Ames
Research Center for a body of revolution at a subsonic Mach number. The
value of Cmq for this configuration is estimated to be quite small and,
as can be seen, the data correlate very well. Note that, particularly in
the regilon of greatest nonlinearity, the pitch damping varies with oscil-
lation amplitude and would not, therefore, correlate with the single~static
stability curve given by Cma' It 1s the simultaneous variation of the
effective static stabllity Cm,, Wwhich leads to the correlation shown.

It appears, therefore, that a fairly sound understanding of the
physical processes underlying a correlation between the dynamic stability
derivative Cm& and the static stability derivative Cma has been
attained. The constants in Eg. (23) indicate the quantitieslwhich mist be
determined in order to utilize these results in a ratiomnal estimation
procedure - the starting value of the indiclal response, and the charac-
teristics of the response as determined by integrals of the functions £.(t)

and fo(t). Work in this direction is now in progress.
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for a triangular wing of aspect ratio 2.



OSC AXIS

ASPECT RATIO = 4

-40 MAX THICKNESS _
[ CHORD e
-3.0
9
=20
= 1.0
1 1 1 1 J
0 2 4 6 .8 1.0

MACH NUMBER

Fig. 5.- Comparison of theoretical and experimental damping coefficients
for a triangular wing of aspect ratio 4.

Al
/

Cmq * Cmg -Cm Cmg
a

- +
Cmq+ Cma

Fig. 6.- Relationship between static stability and damping in pitch.



Fig. 7.- The indicial response

Fig. 8.- Approximation of continuous angle-of-attack variation by means
of step functions.
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Fig. 9.- Motion which produces harmonic angle-of-attack variation.
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Fig. 10.- Interpretation of the integrals appearing in the correlation
constants.
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Fig. 11.- Experimental correlation of effective static stability and
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