Digital Human Modeling at NASA-JSC

Sudhakar Rajulu, Ph.D. (NASA)
Background

NASA uses digital human modeling to represent untested members of the population when completing analyses, and to simulate hardware that has not yet been created.

- **Data Collection tools to feed analyses**
 - 3D Scans
 - Motion capture
 - Hardware mockups

- **Analysis Methods**
 - CAD models of human and suit
 - MATLAB stick figures – population analysis
 - Volumetric/Posture analysis

Overlay of scans of a human and a soft suit mockup
Human Modeling Challenges at NASA

- Restrictions and additional bulk due to pressurized space suits
- Crew population could encompass anyone from a 1st percentile female to a 99th percentile male
 - Obviously no one is 1st or 99th percentile in every dimension, so multivariate analyses need to be done to ensure that a simulated population reflects real people and not ‘Franken-people’ who have unrealistic proportion combinations
- Reduced gravity operations
Videos: Walking in a Pressurized Suit

Walking in an LEA Suit

Walking in an EVA Suit
Modeling Inputs: 3D Scanning

- **3D Scanning Hardware:**
 - Human Solutions - Vitus Whole Body and Pedus Foot Scanner
 - Horizontal Laser scan
 - Texture only
 - 3DMD – 12 cameras units
 - Photo based
 - Color and texture images

- **Uses:**
 - Linear anthropometric dimensions
 - Volumetric comparisons
 - Free volume in suit
 - Multi-subject overlay
 - Human/Hardware interface
Modeling Inputs: 3D Scanning

- **Limitations**
 - Loss of Data (occlusions)
 - Large File Size
 - Scanner Volume limits
 - Can not manipulate posture of 3D model after scanning (static posture)
 - Difficult to replicate suited posture in an unsuited scan

- **Future**
 - Dynamic anthropometry
 - Dynamic scanning
 - Increased capture volume

An occlusion in a 3D scan

National Aeronautics and Space Administration
Modeling Inputs: Motion Capture

- **Motion Capture Hardware:**
 - Vicon® Optical Motion Capture System

- **Limitations:**
 - Complexity of Output
 - Direct Euler angle output can be difficult for designers to interpret
 - Data collection restrictions
 - MX camera system is less efficient in small, cramped spaces
 - Occlusions/data loss

- **Future Capabilities:**
 - Bonita system for small volumes
Modeling Inputs: Hardware Mockups

- **Uses**
 - Collect human in the loop data to import into simulations

- **Examples**
 - **Reconfigurable hard upper torso**
 - Mockup space suit hard upper torso that can be reconfigured to accommodate subjects of varying anthropometry
 - **Reconfigurable Orion Mockup**
 - Space vehicle frame and interior that can be reshaped and resized to account for ongoing design changes
 - Transparent walls allow for data collection within frame
Video: Seat Ingress Motion Capture
Modeling Inputs: Hardware Mockups

- **Limitations**
 - Mockups require some degree of simplification
 - Reconfigurable hard upper torso cannot be pressurized
 - Reconfigurable mockup, in order to allow unobstructed data collection, did not include all internal vehicle elements
 - Test subject population may not adequately represent the full potential user population

- **Future**
 - Mockups of additional suit components and vehicle designs
Simulation: CAD Models

- CAD Models of Suits and Human
 - Software package: Solidworks

- Currently modeled suits
 - MK III Space Suit Demonstrator
 - Space shuttle extravehicular Mobility Unit (EMU)
 - Reverse engineered from 3D scans and manual measurements

- Human Model (‘Anthronaut’)
 - Segments are reconfigurable to match anthropometry of simulated subjects
 - Can be used to drive the suit model
Simulation: CAD Models

- **CAD Model: Suit/Human Interaction**
 - Human-Suit Interface Modeling
 - Spring/dampers between suit upper arm and surface of human arm
 - Rigid body contacts between suit components, and between arm and suit
 - Motion Simulation
 - ABF human model is animated using motion drivers; motion of the human drives motion of the suit
Simulation: CAD Models

- **Integrated Suit/Human Model**
 - **Example usage**
 - Look for ‘hard stops’ between suit components, or between the human model in the suit, where motion is restricted
 - Evaluate suited work envelope restrictions as the size and shape of the human and suit models are modified

- **Limitations**
 - Simplistic modeling of human material properties and kinetics
 - Suit soft components are currently modeled as linkages, due to complexity of modeling pressurized soft goods
Video: Suited Work Envelope Sim
Simulation: Population Analysis

- **Software Package:**
 - MATLAB

- Analysis of multiple variables simultaneously, taking understanding beyond single dimensional percentiles

- Integrates human in the loop testing, posture analysis and anthropometry database to extrapolate results for individual subjects to the entire population

Based on HITL testing
- obtained posture from HITL subjects
- used hardware seat settings to position subjects correctly
- Multi-variate model built from butt to hand

Result shows HITL subject test data for location of restraint device
Simulation: Population Analysis

- **Example Application:**
 - Determine ability of the entire population to ingress a hatch while suited
- **Inputs**
 - Subject posture during hatch negotiation
 - Hatch geometry
 - Subject anthropometry
- **Outputs**
 - Minimum hatch size to accommodate the entire population, given assumptions on ingress method
Simulation: Population Analysis

- **Example Application:**
 - Knee Clearance to Vehicle Display and Control Panel
- **Inputs**
 - Subject posture
 - Subject anthropometry
 - Vehicle hardware dimensions
 - Vehicle landing assumptions
- **Outputs**
 - Population accommodated by existing vehicle design, given landing conditions

Population Analysis for Knee Clearance
Simulation: Population Analysis

Hardware Accommodation Concern

No Stroke Seated Console Accommodation

<table>
<thead>
<tr>
<th>HSIR Population Percentage by Gender</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsuit w/o Umbilical Male</td>
<td>100.0%</td>
<td>99.1%</td>
</tr>
<tr>
<td>Suit w/o Umbilical Male</td>
<td>99.8%</td>
<td>9.9%</td>
</tr>
<tr>
<td>Suit Male</td>
<td>44.4%</td>
<td>2.9%</td>
</tr>
</tbody>
</table>

Percent Accommodated

<table>
<thead>
<tr>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsuit w/o Umbilical Female</td>
<td>99.1%</td>
</tr>
<tr>
<td>Suit w/o Umbilical Female</td>
<td>99.1%</td>
</tr>
<tr>
<td>Suit Female</td>
<td>2.9%</td>
</tr>
</tbody>
</table>

Pallet Clearance Study 2009
Simulation: Population Analysis

Limitations:

- Analysis is based on the general posture and movement strategies of HITL subjects, and may not include all potential strategies or postures.
- If hardware does not accommodate a subject (for example, poor suit fit), it can affect the accuracy of results when extrapolating for that segment of the population.
- Make use of linear anthropometric dimensions vs. volumetric analyses.
- Static postures, not dynamic.

An Example Suited Seat Ingress Method
Video: Different Ingress Strategies
Simulation: Volumetric Analysis

- **Software Packages Used:**
 - MATLAB, SolidWorks, Polyworks, FARO Arm

- **Anthropometric analyses** to consider fit issues with suits, vehicles, and habitats, to create sizing schemas, and to mitigate injury

- **Make use of the ABF 3D scanners,** to extend analyses beyond linear anthropometric dimensions
Simulation: Volumetric Analysis

<table>
<thead>
<tr>
<th>Example Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boundary Manikins to represent human body size and shape variations</td>
</tr>
<tr>
<td>Boundary manikins provide an optimized population spectrum while minimizing the final number of representative scans</td>
</tr>
<tr>
<td>Represent realistic anthropometric variation by scaling existing surface scans (baseline scans) to targeted anthropometry</td>
</tr>
</tbody>
</table>
Simulation: Volumetric Analysis

- **Example Application**
 - Conformal seat design
 - Provided recommendations on the overall shapes and sizes of the lower body for conformal seats to accurately represent the curvature of the lower body
 - Linear measurement and surface meshes of the lower body were used with population analyses to determine size ranges and proper curvature

Scan of one subject (top) and multiple scans overlaid (bottom)
Conclusions

- Human modeling at NASA integrates:
 - Software tools
 - Hardware mockups
 - Human in the Loop testing (to drive models)
 - Data collection hardware (laser scans, motion capture)
 - Anthropometric databases

- There are limitations in any modeling method, and simulations are only as good as the data that drives them. However, they are a useful tool for determining how hardware accommodates the potential user population.
Questions?