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ABSTRACT 

Objective: Perform System-Level EMI testing of the Orion Exploration Flight Test-1 (EFT-1) 

spacecraft in situ in the Kennedy Space Center’s Neil Armstrong Operations & Checkout (O&C) 

Facility in 6 days. 

 

The only way to execute the system-level EMI testing and meet this schedule challenge was to 

perform the EMI testing in situ in the Final Assembly & System Test (FAST) Cell in a 

reverberant mode, not the direct illumination mode originally planned.  This required the 

unplanned construction of a Faraday Cage around the vehicle and FAST Cell structure.   

 

The presence of massive steel platforms created many challenges to developing an efficient 

screen room to contain the RF energy and yield an effective reverberant chamber. 

 

An initial effectiveness test showed marginal performance, but improvements implemented 

afterward resulted in the final test performing surprisingly well! 

 

The paper will explain the design, the challenges, and the changes that made the difference in 

performance! 
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BACKGROUND 
 

Orion is the Multi-Purpose Crew Vehicle planned to be the National Aeronautics and Space 

Administration’s (NASA) deep space exploration spacecraft, destined to take astronauts beyond 

the International Space Station, beyond the Moon to the Earth-Moon L2 LaGrange point, and 

eventually to Mars.  This spacecraft is composed of a Crew Module (CM), a Service Module 

(SM), a Spacecraft Adapter (SA), and three jettisonable fairings. The spacecraft is topped by a 

Launch Abort System (LAS) intended to pull the Crew Module away to safety in the event of a 

launch vehicle anomaly. 

 

The Orion Exploration Flight Test-1 (EFT-1) was a development first-build spacecraft supported 

by NASA as a Lockheed Martin-owned and operated project.  As a developmental spacecraft it 

was decided that system environmental tests would be minimal, accepting component-level 

environmental testing as mitigation to keep program costs to a minimum.  System environmental 

tests were limited to a vibration test on the Crew Module, powered operations for a minimum of 

200 hours for operational confidence, and limited EMI/EMC (ElectroMagnetic Interference / 

ElectroMagnetic Compatibility) testing to meet requirements for range safety.  This paper 

explores the facility built to support the limited EMI/EMC test. 

 

ElectroMagnetic Interference testing is also referred to as Radiated Susceptibility testing.  This 

test exposes the spacecraft to the tracking radars and communications signals (non-ionizing 

radiation) that barrage the spacecraft throughout its mission, and includes strong signals that are 

not necessarily associated with the project. 

 

ElectroMagnetic Compatibility testing is also referred to as Self-Compatibility testing. This test 

verifies the various systems on the spacecraft do not interfere with each other.  This testing is not 

the focus of this paper. 

 

Without a dedicated test facility to perform the EMI testing it was originally decided to perform 

the test in the direct illumination mode without a special chamber.  This meant the broadcast 

frequencies simulating the threats to the Orion spacecraft would be openly broadcast and could 

interfere with other systems sensitive to those frequencies.  A special request specifying the 

frequencies and powers for this test was filed, and NASA approved performing this test in this 

manner.  The planned test duration was three weeks. 

 

However, schedule pressure reduced the available test window such that Direct Illumination was 

no longer a viable option due to the number of test runs required to exercise all of the 

combinations of frequencies, locations, and polarizations that direct illumination testing requires. 

Testing in the reverberant mode became the only option to meet the reduced schedule, but this 

required the construction of a test facility to contain and reflect the radiated signals to all parts of 

the spacecraft at once, without having to reposition the antennas and incur additional test runs. 

FACILITY 
 

The Orion EFT-1 spacecraft was assembled and tested in NASA’s Operations & Checkout 

(O&C) facility at the Kennedy Space Center.  This is the historic facility in which the Apollo 

spacecraft underwent final integration and test. The O&C Highbay and associated office areas 
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have been contracted to Lockheed Martin as an Industrial Operation Zone (IOZ), allowing 

Lockheed Martin to perform the assembly, integration, and test work under Lockheed Martin 

policies and procedures, eliminating the risk of slightly different NASA policies and procedures 

confusing the engineers and resulting in out-of-policy work being performed. The IOZ was 

completely refurbished by Lockheed Martin and the State of Florida to now be a state-of-the-art 

integration facility, and was the topic of a paper titled “Affordable Final Assembly and Test 

Facilities for the Orion Program at Kennedy Space Center Operations and Checkout Building” 

and submitted by John Stalder and Ron DaSilva in 2011 at the 26th Aerospace Testing Seminar. 

 

The Final Assembly and System Test (FAST) Cell resides against the north wall at the east end 

of the IOZ.  This station was developed to stack Orion’s CM on the SM and perform final 

system-level testing.  (Historically, this is also the same location the Apollo Command Module 

was stacked on its Service Module.)  The FAST Cell provides access to the Orion spacecraft on 

three levels to support mating, testing and final assembling operations.  See Figures 1 and 2. 

 
Figure 1: FAST Cell Location is at the East End in the IOZ 

 

 
Figure 2: FAST Cell’s Three Levels 
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The FAST Cell was not intended to support EMI testing – this was a system-level test that was 

originally planned to be performed at NASA’s Plum Brook Station for the Orion Qualification 

Test Vehicle.  With the cancellation of the Constellation Program and the continuation of the 

Orion project as the Multi-Purpose Crew Vehicle, the EFT-1 vehicle’s simplified test program 

brought the EMI test back to the O&C for this first vehicle.  This is why direct illumination 

open-air testing was originally pursued for EFT-1 – it required no special facility. However, 

nearby EGSE had to be protected, so a temporary RF shield would be constructed around the 

racks.  See Figure 3. 

 

 
Figure 3: EMI Direct Illumination Open Air Concept 

 

Enter the schedule compression.  How do we execute a 3-week test in 6 days?  We had to modify 

the plan to go with building a reverberant chamber. We call it the EMI Screen Room. 

 

Rather than explain the lengthy process we went through to create the EMI Screen Room around 

the structure you see above, this paper will outline the design challenges and obstacles that need 

to be resolved to build a large EMI Screen Room in a not-so-perfect location.  But before we go 

there, let’s review the final product. 
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THE AS-BUILT EMI SCREEN ROOM 
 

The FAST Cell was transformed from a relatively clean structure shown in Figure 4 to the 

Reverberant EMI Screen Room shown in Figure 5 in about four months with a small crew of 

usually 3 technicians. 
 

 
Figure 4: FAST Cell Just After Structural Completion 

 

 
Figure 5: EMI Screen Room Ready for Effectiveness Test 
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The chamber shown above is configured to perform the initial Effectiveness Test, with boxes of 

“lossy foam” placed in the center of the chamber as an energy sink.  This test would reveal 

whether the chamber behaves as a reverberant chamber should, and be capable of yielding a 

successful test with the spacecraft scheduled for a couple of months later.  There were items not 

completed, such as all of the stitching of the cable trays and socking the intruding air pipes, but 

we hoped simple workarounds would not impact the results enough to harm the test. 

 

Details of the test preparation and conduct are provided later in this paper, but to summarize the 

results, at the end of the test the outcome did not meet expectations. Hoping for a reported 

Quality-factor (Q or QF) of 4,000 or better, the evaluated Q was only a couple of hundred rather 

than a couple of thousand.  (Q is an indicator of how effective the chamber is at reflecting and 

moving the energy without dissipating it.) See Figure 6. If we couldn’t fix the Screen Room to 

improve the reverberant characteristics, and, as a result, raise the Q, the test would have to be 

performed with direct illumination method and require significantly more schedule. 

 

 
Figure 6: Effectiveness Test Quality Factor Results 

 

Determined to improve the results for the actual test, we used the next few months to finish make 

some changes.  Based on the weakness in the vertical polarization we assessed the columns 

supporting the 16’-level platform played a larger role in absorbing RF energy than expected. And 

the overall weakness of the results suggest the platforms were a significant energy sink and more 

diligence needed to be performed in “taking them out” of the picture.  
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Three months later it was time to run the actual test.  Figure 7 shows the chamber with the 

spacecraft in it, just before the run began.  
 

 
Figure 7: Final EMI Screen Room Configuration 

 

The one item visibly different from Figure 5 to Figure 6 is the closest column (which is the 

southeastern column) moved from inside the screen room in Figure 5 to outside the screen room 

in Figure 7.  Other changes will be discussed later.   

 

The results of the final EMI/EMC test were drastically improved from the effectivity test and 

successful!  This allowed us to certify the spacecraft for launch. 

 

The remainder of this paper will explain what we did, and what you need to consider if you elect 

to create your own in situ EMI Screen Room. 
 

CONSIDERATIONS 
 

There are basic decisions that need to be made that can significantly affect the design and cost of 

an EMI Screen Room, and work that should be performed to improve the likelihood of building a 

successful EMI Screen Room.  Please, learn from our lessons learned!  

 



29th Aerospace Testing Seminar, October 2015  8 

DECISION 1: WHAT CONCEPT DOES YOUR BUDGET SUPPORT? 

The concepts to be addressed are for an inexpensive EMI Screen Room based on the size of your 

test article.  A dedicated facility can easily be in the millions of dollars.  A purchased free-

standing RF Fabric room can be in the $100k-500k range.  In this case $50,000 was our material 

budget, which put the RF Fabric room out of our reach.   

 

The Orion EFT-1 spacecraft is one of the largest spacecraft ever flown on an expendable launch 

vehicle.  EFT-1 is 18 feet in diameter and 26 feet tall.  The EMI Screen Room size needed for an 

article this size should be at least 28 feet wide by 28 feet deep by 31 feet tall (allowing 5 feet 

clearance all around the vehicle for reverberant reflections).  A freestanding structure this size 

would require significant engineering and would block the highbay transfer aisle, making crane 

operations impossible.  Freestanding was also not an option for Orion EFT-1 because we had a 

requirement to test in situ to eliminate schedule impacts of moving the vehicle and 

EGSE/MGSE.  The room size dictated by the FAST Cell structure was to be approximately 30 

feet wide, 30 feet deep, and 36 feet high; adequate for our purposes.  Using the FAST Cell 

structure to give our Screen Room support seemed the best concept to pursue. 

 

DECISION 2: WHAT MATERIALS WILL YOU USE? 

Our EMI specialists showed us photos of small free-standing EMI Screen Rooms they built for 

small (2 ft cube-sized) test articles.  Second, to build a screen room large enough to fit around 

this spacecraft we needed to make use of the support the FAST Cell structure could give. 

 

For the budget, a Faraday Cage made primarily of copper screen was the appropriate direction to 

go.  Building on the concept of the free-standing screen room we settled on a concept of wood-

frame panels covered in copper screen.  While wood is not ideal for a clean room environment, it 

was affordable, easy to work, and manageable for FOD (foreign object debris) control.  The 

FAST Cell structure could support the panels, and the screen would be wrapped in a way to 

allow the panels to be screwed together to make tight seams. 

 

DECISION 3: TO MAKE DRAWINGS, OR TO NOT MAKE DRAWINGS? 

The best way to know if the concept selection stands a chance of being fabricated and stays in 

budget is to have it put into a drawing.  This is especially important if the EMI Screen Room is 

to be built around a multi-level structure such as the KSC O&C’s FAST Cell.   

 

Our drawings raised the question of stability for the upper level screens that had to free-stand on 

the platform. This resulted in the addition of a 2”x4” support wall to provide extra stability.  

While rope stays were planned to ensure the walls would not fall in to the center, the structure 

was so stable the stays were not employed except at one location. 

 

Penetrations required by cable trays required some creative design in the wood panels to ensure 

we could assemble the wall around the trays. The CAD drawings were critical in shaping the 

panels around the cable trays, and in three cases split the panels into upper and lower sections. 
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DECISION 4: SHOULD YOU MAKE FACILITY MODIFICATIONS? 

In a word: yes.  Unless it was designed from the start to support the EMI/EMC test, it is highly 

likely something will need to be changed.  In this case we had three specific mods to make: 1) 

extend the southeast column up 12 feet, 2) add power all around the FAST Cell for the 

amplifiers, and 3) strip paint.  The first two required drawings and approvals.  The last just 

required approval. 

 

Contrary to requests, the southeast column of the FAST Cell was cut off at the height of the 16’-

level platform. However, in order to support the front corner of the screen room, we required the 

column be extended to match the height of the southwest column.  This was approved and 

provided a mounting point to support what became the Front Curtain.  See the drawing snapshot 

in Figure 8. 

 

The FAST Cell structure had been painted per the design requirements for a clean room facility.  

However, in order to “take the structure out” of the EMI Screen Room we were driven to strip 

the paint from several locations in order to make direct contact with the copper screen (details 

will be provided later).  Make certain the program understands the necessity of this and allows it 

if any of the structure will be inside of the Screen Room. 

 

 
Figure 8: FAST Cell Southeast Column Extension Drawing 

 

As the power distribution was not involved in the actual EMI Screen Room design, it is not 

going to be further discussed.  However, it, too, was necessary to support the EMI/EMC test and 

was a cause for drawings and modifications around the FAST Cell. 
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CHALLENGES 
 

Now that the fundamental decisions have been made, there are a myriad of challenges to 

consider and overcome to have a successful reverberant EMI Screen Room.  Again, please, learn 

from our lessons learned!  

 

Before we start we need to provide you with a few more details on our screen room build. 

 

The EMI Screen Room outline was partially dictated by the platform structure – where could we 

drill holes for the C-channel without going through the box beams or angle iron webbing? We 

also had to consider allowing room on the platforms for the EGSE racks, and avoid the moving 

parts such as the lower platform that raises to various working heights around the spacecraft, and 

the upper platforms that flip back to allow the vehicle to be craned in and out of the FAST Cell.  

As a result of these considerations we defined the outline as shown in red in Figure 9.   

 

 
Figure 9: FAST Cell Wall Outline (Red) 

 

The vertical screen outline was defined as shown in Figure 10 with the orange outline.  

Beginning at the top, the screen on the upper 16’-level platform stood 10 ft above the platform, 

with the screen wrapping around the outer edge of the platform, connecting to the lower wall 

panels.  The lower wall panels were 14 ft tall, standing between the 0’-level and 16’-level 

platforms.  The screen at the bottom of the 14 ft-tall panels ran across the platform to the center, 

at which point the screen dropped down and wrapped the lower 8 ft of the Orion Service Module. 

33.5 ft

25.5 ft

5 ft

6 ft

25.5 ft

5 ft

6 ft

25.5 ft
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Figure 10: Screen Wrap Platforms to Protect EGSE 

 

Also depicted at the top of Figure 10 in blue is the Screen Room roof. We will briefly discuss 

each of these – the walls, the platforms, the bottom of the spacecraft and the roof – and the 

challenges they presented in completing the EMI Screen Room. 

 

On to the challenges! 

 

CHALLENGE 1: Protect the EGSE 

While this was obvious and one of the easiest issues to conquer, it must be stated that the 

Electrical Ground Support Equipment (EGSE) must be protected from the EMI RF energy.  This 

equipment is critical to power and support the spacecraft under test and may be susceptible to the 

RF energy being used to test the spacecraft.  Every effort must be made to ensure the EGSE is 

not compromised. Had we proceeded with a Direct Illumination test (no Faraday Cage) we 

would have built a screen room around the EGSE to ensure the RF signals would not reach the 

EGSE.  For a Reverberant test, the simplest approach is to ensure the EGSE is on the outside of 

the Faraday Cage. 

 

We did this by ensuring the platform that had to be encased already had copper screen laid on the 

floor (Figure 11) and stitched together before the EGSE was brought in.  Setting the EGSE on 

top of the screen on the platform ensured it is physically outside of the Faraday Cage (Figure 12).  

Whether the seams in the screen are adequately sealed is another topic. 
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Figure 11: Screen-Wrapped Platform – from Above 

 

 

 
Figure 12: EGSE Brought in After Screen was Laid Down and Stitched 
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CHALLENGE 2: Building the Panels 

In order to stay within budget, we decided to make the panels with wood frames panels long 

enough to fit between the platforms on the 0-level (about 14 ft high), and to stand up 10 ft tall on 

the +16-level.  1”x4” boards were selected to keep the weight down, and a backer board spine 

(1”x6” for 10-ft panels and 2”x6” for 14-ft panels) was added to provide stiffness.  Readily 

available material from the local hardware store could only be found in 12-ft lengths. In order to 

make the 14 ft panels the vertical boards had to be pieced together. We found that a simple spline 

3-ft long provided adequate strength when glued and fastened with screws.  See Figure 13.   

 

CHALLENGE 3: Joining the Panels 

The backer board spine (1”x6” for 10-ft panels and 2”x6” for 14-ft panels) added to provide 

stiffness also provided a surface to screw adjacent panels together. See Figure 14. Joining the 

panels in this fashion securely pinched the screen together at the backer board spine, making the 

panels appear to be a continuous metal wall for the Faraday Cage.  Screws every 10-12 inches 

secured the panels together and eliminated the need to sew the screen together at every panel 

interface. 

 

 

 
Figure 13: 10’ and 14’ Panel Concept, and 14’ Panel Drawing, Side and Front Views 

 

14-ft tall panel using 

1x4x12ft and 2x6 

spine support

2x6 is short top and 

bottom to clear the 

C-channel

3 ft 1x4s are glued to 

spline the 1x4 joints

10-ft tall panel 

using 1x4x10ft 

and a 1x4 spine 

support to join 

panels
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Figure 14: Panel to Panel Overlap, Top View 

  

CHALLENGE 4: Connecting Walls and Floors/Ceilings 

Between the 0-level and +16-level, a means of holding the panels in place and preventing them 

from falling in on the spacecraft was required. C-channel rails were identified as the solution for 

this.  Similar to home window screens, the C-channel needed to be a deep pocket at the top, 

allowing the panel to be inserted, raised up then the bottom dropped into the lower C-channel.  

When the panel is seated in the lower channel, enough is still in the upper pocket to prevent the 

panel from tipping over.  See Figure 15 for the initial design concept. 

 

 
Figure 15: Initial Concept – C-Channels to Support Panels Between the Platforms 

 

Screen that wrapped the platform was tucked up into the upper C-channel so the panel top 

pinched the screen into the C-channel, forming a strong bond between the upper screen on the 

panel and the platform wrap screen.  Similarly, the screen on the lower floor was laid across the 

C-channel on the floor, and the lower screen on the panel pinched the floor screen into the C-

channel.  
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The upper screen panels would only have a lower C-channel to sit in. To ensure they could not 

fall inward onto the spacecraft a support wall was planned instead, to bolt to the deck at the C-

channel line and allow the upper screen panels to be attached directly to the support wall, 

eliminating the need for C-channel on the upper platform.  So we had to ensure the screen would 

have adequate pressure contact with the floor screen.  We pre-tucked the wall panel’s tail 

underneath and held it with a couple of screws.  For the Effectiveness Test here is where we 

stopped – we relied on the weight of the wall to complete the contact, and this may have been a 

leak point. For the final test, once the wall panels were all installed, the wall screen tail and the 

floor screen edges were rolled together and screwed against the wall panel.  See Figure 16. 

 

 
Figure 16: Screen Closeout at Bottom of Wall Panels 

 

CHALLENGE 5: Closeout the Front 

Closing out the front of the FAST Cell raised the greatest challenges and most debate.  With the 

plan to raise the 16’-level flip platforms we were left with no structure in front to support wall 

panels, and 28-ft tall wall panels were out of the question, especially when we had to consider 

raising them with the vehicle in the FAST Cell.  We settled on creating a screen “curtain” that 

could be raised across the opening.   

 

The details of how to fabricate it, raise it, hold it in place, attach it to the top, sides, and bottom, 

spawned much discussion.  The first step was to get the southeast column extended, as discussed 

under Decision 4, above. Otherwise we would not have had an east side support for a cable or 

bar to hang the screen.  Would the screen hold its weight when suspended for 35 feet?  Would 

seven sheets of screen sewed together hold together when suspended for 35 feet? When we 

sewed the screen for the floor we learned the screen was much more robust that we first thought. 

We decided the strength in the screen lay in its length and made the curtain using 7 vertical 

panels.  A 3-inch pocket stitched into the top with a 1-ft tail provided a place to string a cable for 

hoisting and support and gave a surface to attach the roof, similar to the screen tail at the top of 

each of the wall panels.  A long spreader bar was used to lift the curtain into place until the 

cables could be threaded through pulleys and turnbuckles, secured, and tightened. 

 

Custom cut boards were fabricated to pinch the sides of the screen against the front of the wall 

panels on the lower and upper levels.  This left the bottom edge of the curtain to be sewn to the 

front edge of the floor.  This closed out the front.  See Figure 17. 



29th Aerospace Testing Seminar, October 2015  16 

 

 
Figure 17: Front Curtain Closeout Being Craned into Place 

CHALLENGE 6: Closeout the Bottom 

The screen was essentially wrapped around the half of the Service Module that extended below 

the 0’-level platform. The SM itself was wrapped in Llumalloy (a plastic film approved for use 

on the Space Shuttle) to protect the surface from any marring by the screen material.  The screen 

was bungeed around the upper flange of the stand on which the spacecraft rested.  To complete 

the bottom portion of the Faraday Cage, it was necessary to close out the bottom of the Service 

Module itself, and close the contact with the screen at the stand flange. 

 

The technicians had a brilliant scheme to accomplish this with aluminum foil.  PMI cord was 

used to create a web across the base of the spacecraft, tying to the flange of the stand. This 

supported the weight of the aluminum foil allowing it to lay flat.  Strip after strip was carefully 

laid across the PMI cord web, taped together with copper tape, and taped up to the screen edge at 

the base. Yes, aluminum foil is an approved material to use in your EMI Screen Room.  Don’t be 

afraid to experiment with materials.  See Figure 18. 
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Figure 18: Service Module Bottom Closeout 

 

CHALLENGE 7: Closeout the Top 

Putting a roof on the EMI Screen Room without building a structure over the spacecraft was a 

challenge until we decided to follow up with several manufacturers who make RF reflective 

fabrics.  Unfortunately, these fabrics are expensive, and a piece large enough to cover the EMI 

Screen Room consumed almost half of the available budget.   

 

We ordered a large 40-ft square of fabric with a hanging loop placed in the center to lift it.  

Loops placed on each corner then provided tagline connections to control the fabric during lift 

and pull the corners out.  A cable with a pulley was strung and proof loaded above the FAST 

Cell before the vehicle was in place.  The pulley allowed us to raise the fabric up and over the 

spacecraft, and the tag lines pulled the corners out over the top of the upper screen walls.   

 

Attaching the fabric to the screen walls was tabled until we had hardware in hand.  But that day 

came and we decided to try to use a dowel around which the upper tail of the wall panel screen 

and edge of the roof RF fabric could be rolled.  Pipe clamps applied every two feet were 

adequate to hold the edges tightly together.  See Figure 19. 
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Figure 19: RF Fabric Roof in Place and Held with Pipe Clamps 

CHALLENGE 8: Structural Energy Drain 

The FAST Cell in which we planned to perform the EMI/EMC test is tucked in the corner of the 

facility. The structure itself is relatively new, built for Orion, and if it were a free-standing 

structure it would have been much easier to encapsulate in the Screen Room.  But it was 

connected to adjacent structure that hails from the Apollo days – tons of steel in several thousand 

square feet of platforms and two 33 feet diameter, 55 feet tall altitude chambers. See Figure 20. 

 

NASA would not allow the new structure to tie to the O&C walls.  This helped in the 

implementation of the screen room by ensuring there is an airgap around the north, east and 

south sides of the structure and made it easier to wrap the platforms.  However, they were 

allowed to tie the new structure to the Apollo-era structure.  Any RF energy that entered the 

FAST Cell structure would “broadcast” out through the tons of steel, dissipating the RF energy 

in the FAST Cell. 

 

Tricks to take the structure out of the EMI Screen Room include moving the walls to exclude the 

structure from the interior of the Screen Room, and “short circuit” the structure with the Screen 

Room itself, making it part of the screen room rather than a conduit or antenna out of the screen 

room.  We implemented the former by redesigning the corner of the Screen Room to move the 

walls and curtain on the Southeast corner to bring them inboard of the column, taking that 

column out of the Screen Room, as mentioned above and visible between Figures 5 and 7.     

 

We implemented the latter primarily by removing paint in strategic areas and compressing the 

screen to the bare metal. We removed the paint from under the support walls on the upper level, 

removed paint from the tops of the two columns still inside the Screen Room, and removed 

bands of paint from the top of two columns penetrating the Screen Room.  See the montage in 

Figure 21. 
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Figure 20: 50 Years of Structure Attached to the FAST Cell 

 

CHALLENGE 9: Cable Trays, and Other Penetrations 

As you might expect, there were cable trays both inside and outside of the Screen Room. For the 

cable trays outside of the Screen Room we were fortunate to have stretched the platform screen 

before the cable tray installation began.  This allowed us to coordinate installing additional nuts 

with fender washers to punch the screen with the threaded hanger rods, and pinch the screen to 

the hanger’s beam clamp with the fender washer, effectively sealing off the rod penetration.  See 

Figure 22.  If we did not have this opportunity, the screen would have completely enveloped the 

cable trays outside the Screen Room because cutting and stitching the screen around the hanger 

rods would have been incredibly time consuming. 
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Figure 21: Taking the Structure “Out” of the EMI Screen Room 

A. Stripping Paint Under Support Wall 

B. Stripped Paint to Sock Column Inside Screen Room 

C. Integrating North Columns into Screen Room 

 

For the cable trays inside the Screen Room, we had a choice: either sock every cable that enters 

the Screen Room from its point of origin and ground to its point of connection to the spacecraft, 

or sock the entire cable tray and only the part of the cable that extends from the cable tray to the 

spacecraft.  We opted for the latter solution as a more complete method of closing out the Screen 

Room.  All cable trays were unclipped from their trapeze. Screen sheets were fed underneath the 

cable trays and pulled over the top of the cable tray, and cable tray clips were replaced.  The sock 

screen was sewn to the Screen Panel screen at each penetration point.  See Figure 23. This 

allowed cables to still be run, and the screen sealed afterward.  Initially, the cable trays were only 

clipped closed for the Effectiveness Test; we had no cables in the cable trays.  So this may have 

been an avenue for losing power in the early test.  For the final test the cables were in place and 

the cable tray socks fully stitched closed.  The cables coming out the end of the cable tray were 

bundled, packed with screen, and cinched tight. This is shown in Figure 24. 
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Figure 22: Threaded Rod Challenge – Close-Up of Fender Washer Installation 

(The two columns in the left image are those mitigated in the “C” images in Figure 21) 

 

 
Figure 23: Socked Cable Trays (also notice Compressed Air Blue Pipe) 
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Figure 24: Socked Cables Coming Out of the Central Cable Tray 

 

The next challenge levied by the FAST Cell utility infrastructure was the compressed air pipe. 

The lines, installed as blue pipe, intersected the screen wall in four locations along the east side. 

These penetrations were not in the Screen Room Panel drawings, and were never intended to 

penetrate the Screen Room. But the drawing did not carry the annotation to keep out of the 

Screen Room.  Four wall panels required on-the-fly modifications to accommodate the pipe, 

rebuilding the top of the panels to notch the top crossbar.  The pipe had to be sanded to bare 

metal on both sides of the screen, have a sock of copper screen sewn around the pipe and 

strapped to the pipe at the bare spots, then have the copper screen sock sewn to the wall panel 

screen to fully integrate the inside pipe into the screen room.  The pipe can be seen above the 

cable tray in Figure 23, and a sample of a socked pipe is shown in Figures 25. 

 

 
Figure 26: Socked and Mitigated Compressed Air Pipe Penetrations 
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We had winch cables to raise the upper flip platforms that had to be accommodated, since the 

flip platforms had to remain operational during Screen Room build and parallel spacecraft 

assembly and test operations. This meant providing upper wall cutouts for the winch cables to 

move.  Once the flips platforms were in their uppermost position, safety stays were attached to 

allow the winch and safety lock cables to be removed.  The Screen Room wall cutout could then 

be replaced and secured.  But in all four cases the safety stays had to penetrate the RF Fabric 

Roof. It took a lot of time to determine where to cut the RF Fabric to allow the fabric to move 

without tearing (plus, as expensive as the fabric was it was difficult to get comfortable with 

cutting it at all!).  See Figure 27. 

 

 
Figure 27: Flip Platform Winch Line Access (L) and Replacing the Panel Below the Safety 

Stay Penetration Through the RF Fabric Roof (R) 

 

CHALLENGE 10: Stuffing and Tucking 

There were many nooks and crannies that defied smooth screen coverage.  These included 

cutouts around columns, indents for cable trays, handrail mounts, etc.  Each came with its own 

challenge and solution.  Simply said, be prepared to wad up screen and pack it in places to help 

closeout screen that can’t be stitched together, and strip paint and strap wads of screen, using 

boards to help apply pressure.  Be prepared to extend socks around penetrations.  Use copper 

tape (with conductive adhesive) as a last resort to close out openings.  See Figure 26. 
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Figure 26: Stuffs and Tucks and Final Socks 

 

CHALLENGE 11: Personnel Access 

The final challenge for the screen wall panels was to create a personnel access door on each level 

that would adequately seal the chamber.  We were continuously warned by our EMI experts that 

this would be difficult to close out and time-consuming to open and close if frequent access is 

required to swap out horns.  A 7’ height door was designed to overlap the wall panel boards to 

provide a faying surface to bond the door to the screen wall.  See Figure 27. It could have been a 

pull-out panel, but we elected to add hinges to allow the door to swing open. During test 

operations the door could be sealed closed with approximately 20 screws – our techs could open 

or seal the door in less than 5 minutes.  (They’re awesome!) We eliminated most of the entry 

opening/closeout cycles by cabling up all of the horns to patch panels built in to the wall panels.  

This allowed the horn swaps to be made from the outside of the Screen Room.  See Figure 28. 
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Figure 27: Personnel Access Door – 0’-Level Platform Screen Wall 

 

 
Figure 28: Antenna Horn “Patch Panel” – outside (L) and inside (R) 

 

FINAL NOTES 

We have provided you with the primary issues you will face if you choose to build your own 

EMI Screen Room.  We want to leave you with a few more items to remember to think about. 

 

E-Field Probes are necessary equipment in a reverberant chamber.  Remember to allow for a 

penetration for these. Also remember that battery-powered probes will have to have batteries 

replaced or recharged. If you have to enter the chamber to do this your personnel access is going 

to have to be opened and sealed more frequently.  Try to get E-field probes that can operate at 

the same time as they are charging, and plan to extend the charge cords into the chamber.  These 

cords also have to be socked – copper tape will work well for this. E-field probe data lines are 

typically fiber optic cables – these do not have to be socked.  Better yet, get E-field probes that 
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are laser-powered. The fiber optic cable is all you will have and the probe will run through the 

entire test without any batter charging issues. 

 

A reverberant chamber benefits from having paddle stirrers for the lower frequencies to keep 

them moving around the chamber.  “Stirring the Chamber” with a design such as this is 

supported by the “breathing” of the chamber – the facility  air handlers blowing across the RF 

Fabric roof help it move, and an industrial fan blowing obliquely on the front curtain kept it 

rippling. Both of these added to the ability of the EMI Screen Room to stir the modes. 

 

Our final test, while not as effective as a chamber built specifically for this kind of testing, was 

adequate for this development vehicle.  The EMI Screen Room looked beautiful (see Figure 29), 

allowed us to test the Orion EFT-1 spacecraft in situ saving us 6-12 weeks in schedule to 

reposition to a distant facility, and in total cost less than $55,000 (yes, we went over budget). 

 

NASA Health Physics swept the exterior of the chamber during testing and verified there was 

negligible RF leak from the chamber, assessing it was safe to be next to the chamber during RF 

operations.  We thank them for participating in the test and for their assessment! 

 

But the down side of the success of the chamber in preventing RF leaks is it also complicated 

spacecraft assembly operations as it didn’t allow the use of wireless devices for procedure 

tracking and headset communications. 

 

Another downside to be aware of for this type of chamber is that FOD (Foreign Object Debris) 

from copper screen wire and trimmings is a significant challenge to manage.  You will never 

eliminate it.  Tacky mats and continuous vacuuming are required to keep copper wire FOD under 

control. Sadly copper wire cannot be picked up with magnets.  Be aware! 

 

FINAL TEST RESULTS 

Our test configuration placed 2 e-field probes inside the Orion EFT-1 Crew Module and 4 probes 

distributed around the exterior of the Crew Module, approximately 4-5 feet from the outer mold 

line.  We typically kept the monitors set to “Max Hold” (a setting that continuously displays the 

highest level recorded) so we would know the highest power seen by each probe to know if the 

spacecraft was seeing the level of environment required. But the best feeling we received was on 

one run we elected to switch to real-time display.  Bob Scully was the first to recognize the 

behavior of the screen when he said, “Hey, look at that!  It’s stirring!”  We captured video of the 

monitor and will show that in the presentation.  But a map of screenshots is presented in Figure 

29.  The location of the screenshot in the image suggests which channels are seeing the highest 

power.  In the corner the channel has the highest reading, and toward the middle it shares the 

high readings with its adjacent neighbor channels. 
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Figure 29: E-Field Probes Observed the RF Energy was “Stirring” 

 

The end result is the Q-factor for the EMI Screen Room was around where we expected, in the 

thousands, rather than in the hundreds we had in the Effectiveness Test. See Figure 30. 
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Figure 30: Final Test Quality Factor Results 

 

 

SUMMARY 

It is possible to design and build an affordable EMI Reverberation Chamber. (That is, 

inexpensive in terms of materials.  This approach will require significant labor to complete.)  

Thoughtful planning and creative energy are required to ensure the facility can be converted to a 

successful EMI Screen Room. Facility modifications will likely be required, if nothing more than 

removing paint to get to base metal structure.  

 

An EMI Screen Room that can use the copper screen for the roof will be far less expensive than 

one that requires a proprietary RF Fabric cover.  Scale of the Screen room and risk to the test 

article are the drivers. 

 

Certainly, the availability of a dedicated facility or a material budget of $200k-$500k to purchase 

a custom RF Fabric room are preferable.  But we have given you the tools to work and succeed 

on a much lower materials budget. 
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