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ABSTRACT 
The purpose of this study was to assess some calculation 

methods for quantifying the relationships of bearing geometry, 
material properties, load, deflection, stiffness, and stress. The 
scope of the work was limited to two-dimensional modeling of 
straight cylindrical roller bearings. Preparations for studies of 
dynamic response of bearings with damaged surfaces motivated 
this work. Studies were selected to exercise and build 
confidence in the numerical tools. Three calculation methods 
were used in this work. Two of the methods were numerical 
solutions of the Hertz contact approach. The third method used 
was a combined finite element surface integral method. 
Example calculations were done for a single roller loaded 
between an inner and outer raceway for code verification. Next, 
a bearing with 13 rollers and all-steel construction was used as 
an example to do additional code verification, including an 
assessment of the leading order of accuracy of the finite 
element and surface integral method. Results from that study 
show that the method is at least first-order accurate. Those 
results also show that the contact grid refinement has a more 
significant influence on precision as compared to the finite 
element grid refinement. To explore the influence of material 
properties, the 13-roller bearing was modeled as made from 
Nitinol 60, a material with very different properties from steel 
and showing some potential for bearing applications. The codes 
were exercised to compare contact areas and stress levels for 
steel and Nitinol 60 bearings operating at equivalent power 
density. As a step toward modeling the dynamic response of 
bearings having surface damage, static analyses were 
completed to simulate a bearing with a spall or similar damage. 

 
INTRODUCTION 
 The motivation for this work was to prepare for studies of 
the dynamic response of bearings with damaged surfaces. The 
purpose of this study was to assess some calculation methods 
for quantifying the relationships of bearing geometry, material 

properties, load, deflection, stiffness, and stress. One of the 
calculation methods studied herein was an approach that makes 
use of a combined finite element and surface integral method 
for contacting surfaces [1-3]. The method has proven very 
powerful for studying a variety of gearing and bearing 
problems. This approach can offer valuable insights for 
situations when elastic deformations, rigid body movements, 
and/or wear and damage have significant effects on the shapes 
and orientations of contacting surfaces [4-8]. Computing speed 
and memory of personal computers are now of sufficient 
performance to consider using simulations to study forced 
vibration response of bearings and gears having pitted 
surfaces [9]. To prepare for such studies, bearing and gear 
computing tools including pre- and post- processors for the 
combined finite element and surface integral method have been 
developed. Studies were selected to exercise and build 
confidence in the numerical tools. 
 The scope of this work was to analyze two-dimensional 
models of straight cylindrical roller bearings. Guo and 
Parker [10] have conducted a study of bearing contact problems 
using both two-dimensional and three-dimensional models. 
Guo and Parker were particularly interested in calculating 
bearing stiffness properties. They noted for certain cases 
significant differences between the three-dimensional and two-
dimensional approaches when calculating stiffness properties. 
Herein, the scope was limited to the two-dimensional approach 
consistent with the motivations for this study. While Guo and 
Parker modeled bearings with no damage, bearings with 
damaged surfaces were considered herein. One must keep in 
mind the limitations of the two-dimensional approximation 
when studying the literature and when selecting an approach for 
a particular study, analysis, or design situation. Even given the 
limitations, the two-dimensional model can provide useful 
insights. 
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ANALYSIS METHODS 
For many engineering situations, the contact deflection and 

state of stress in a bearing can be effectively studied using the 
approach of Hertz published in 1896 [11]. The classical 
approach to solution of the Hertz equations requires calculation 
of complete elliptic integrals of the first and second kind. 
Jones [12] published a calculation method for the application of 
Hertz theory to bearings. This approach made use of charts to 
reduce the calculation burden in the era when electronic aids 
for calculations were not widely available. Harris [13] describes 
methods for bearing analyses including an iterative numerical 
technique to obtain rolling element loads. Hamrock [14] 
provides another approach to the numerical solutions for 
contacting bodies for both elliptical and line contact situations. 
Hamrock’s approach for line contact problems made use of 
equations published by Engineering Sciences Design Unit [15]. 
The Engineering Sciences Design Unit later published an 
update to this publication [16]. Although the Hertz approach 
was published more than 100 years ago, development of fast 
and increasingly accurate approximate solutions for the Hertz 
equations continues. For example, in 2006 Antoine, et al. [17] 
published a set of algebraic equations for approximate, precise 
solutions of the Hertz equations for elliptical contacts. 

Some researchers have especially focused on methods for 
calculating bearing stiffness. Jones provided an early and 
comprehensive treatment of elastically constrained 
bearings [18]. His publication provided 224 equations used to 
study and solve various aspects of shaft and bearing systems 
which were modeled using statically-indeterminate, nonlinear 
elastic equations. Singh and Lim [19-21] studied the limitations 
of bearing analysis models and methods used to determine 
bearing stiffness properties. They provided a new formulation 
to estimate bearing stiffness properties and applied the method 
to study vibration transmitted by the bearings. Guo and 
Parker [10] have made use of a combined finite element and 
surface integral method to study bearing stiffness. They provide 
an overview of the literature for computing bearing stiffness, 
and they compare and contrast the solutions obtained by 
various methods. 

In the present work, straight cylindrical bearings were 
modeled using three computing tools. The first computing tool 
selected for the present work is a modified version of the 
Engineering Science Design Unit approach [16]. For the inner 
raceway and the rolling elements, the equations were used 
directly. However, the published ESDU equations for the elastic 
approach apply only for two cylinders in contact, and so these 
were not used for the elastic approach of the outer raceway 
member. The following modified method was used for the outer 
raceway. First the width of the contact was determined using 
the ESDU equations. Next the movement of the outer diameter 
of the outer raceway relative to the rolling element center was 
approximated as that of a rectangular block of finite thickness 
interacting with the same roller and matching the contact width 
of the roller and inner raceway. The thickness of the block 
matched the thickness of the outer raceway. The movement of 
the block was calculated via an approximate elasticity solution 

described by Johnson [22]. This method will be referred to as 
the “modified ESDU” method in the remainder of this 
document. 

The second computing tool selected for the present work 
was one based on the method of Lim and Singh [19-21]. 
Calculations for this method were done using executable code 
“REBM” provided to the author by Lim [23] and the method 
will be referred to as “REBM”. 

The third tool used for the present work was a combined 
finite element and surface integral method [24]. Analyses were 
done to exercise the computing tool and the associated pre-
processor and post-processor tools for bearing modeling [9]. 
This method will be referred to as the “FE-SI” (finite element 
surface integral) method. 

The remainder of this manuscript is organized as a set of 
case studies. Each case study includes a description of 
geometry and material properties, loads, and results. Following 
is a listing of the case studies included: 

   

Case Study A. The contact condition for a single rolling 
element was studied. An idealized steel bearing having only 
one rolling element was defined and used to study deflection, 
stresses and stiffness. The roller size was varied while 
maintaining the bearing pitch diameter. Case A also includes a 
study of the influence of the numerical grid sizes used for the 
FE-SI method. 
   

Case Study B. The load distribution of a statically loaded 
bearing with multiple rollers was studied. An example steel 
roller bearing with zero clearance was selected to study loads, 
deflection, and stiffness. This bearing example has also been 
studied by Guo and Parker (Ref. 10).  
   

Case Study C. The influence of material properties on bearing 
response was examined. The geometry of the bearing for this 
case matched that of Case B but the material was modeled as 
Nitinol 60 rather than steel. Calculations were done to compare 
stresses of a steel versus a Nitinol 60 bearing for equivalent 
load density. 
   

Case Study D. The influence of a pitted bearing surface was 
studied. The geometry and materials property matched that of 
Case B, but damage (missing material) was modeled on the 
outer raceway at the location in contact with roller #1. Only the 
FE-SI method was used for this case study. The change in the 
bearing deflection because of surface damage was studied. 
   

CASE STUDY A – SINGLE ROLLING ELEMENT 
This case study was done to compare and assess various 

aspects of the calculation methods. The selected geometry and 
loading condition was a single loaded straight roller between 
two raceways. This sort of idealized bearing was selected to 
provide a simple example for studying and comparing the 
numerical methods. The bearings for Case Study A are defined 
in Table 1 and depicted in Figure 1. The roller was assumed as 
positioned on the positive-x axis. The bearings of course do not 
represent practical applications. However, this arrangement 
provides for all the force to be carried by a single roller, 
providing ease of calculation and interpretation of results. 
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Case Study A - Modeling Details 
To begin the assessment of the numerical methods, the 

deflection and contact pressures were calculated for the 
bearings of Table 1 for an assumed radial displacement of the 
outer raceway outer diameter toward the bearing center. The 
displacement magnitude was 0.0254 mm and was directed 
along the x-axis. Details of implementation for the three 
numerical methods were as follows.  

The modified ESDU method comprises a set of algebraic 
equations providing an approximate solution of the Hertz 
equations for line contact. This method requires load as an 
input and calculates deflections and contact details. To study 
the problem at hand, trial-and-error was used to determine the 
load (to the nearest 0.5 N) causing –0.0254 mm of 
displacement of the outer diameter relative to the center of the 
inner raceway. 

The REBM code includes an option to solve using 
displacement as an input and so the problem was solved 
directly avoiding trail-and-error iterations. To use the REBM 
code, a contact stiffness parameter value can be input directly 
or, optionally, the parameter value can be calculated by the 
code using elastic constant for steel and the provided geometry. 
In this work the contact stiffness parameter was calculated by 
the REBM code. 

To solve the problem using the FE-SI method, boundary 
conditions must be specified. For this problem, the outer 
circumference of the outer raceway was constrained to remain a 
pure circle of the specified dimension. The movement of this 
circle was defined as -0.0254 mm along the x-axis. The inner 
circumference of the inner raceway was constrained as a rigid 
circle with zero displacement. The rollers bodies’ inner 
diameters are rigid circles. One should not be mislead by the 
graphic of Figure 1. The model did not simulate hollow rollers. 
The roller bodies are free to move in the radial direction but 
cannot roll or move in the circumferential direction at any 
particular solution step. The rollers are positioned 
circumferentially according to the bearing kinematics for those 
studies requiring multiple time steps. In this work a convention 
was adopted to locate a roller on the positive X-axis. The 

reaction forces on the raceways were calculated as part of the 
solution. 

For the FE-SI method, one must select parameters to define 
the number of finite elements in each body and to define the 
size of contact cells used for the contact algorithm. In this work 
these parameters were systematically varied over a range of 
values to study the influence of these parameters and to study 
the leading order of accuracy. 

A finite element mesh was defined to have elements of 
similar size in all bodies, reasonable aspect ratios, and element 
numbers to be able to refine the mesh in 50 percent increments 
successively twice. That is, to create refined meshes, a 
refinement factor R was used. Herein, R=1.5 was used where 
R= ratio of length of element in mesh “A” to length of the same 
element in mesh “B”. Figure 2(a-c) depicts meshes “A”, “B”, 
and “C” using roller A2. The elements have nodes at each of 
the displayed corners. Each cubic-order element has additional 
nodes not shown in the figure. Using this scheme, the number 
of elements in each body increases by a factor of 2.25 for each 
refinement. The number of finite elements total in the outer 
race, inner race, and a single roller for each of the three meshes 
used was: mesh “A”, 4800 elements; mesh “B”, 10800 
elements; mesh “C”, 24300 elements. 

The FE-SI approach to contact problems requires selection 
for the size of the numerical contact grid or “cells”. For each 
cell the contact pressure is a constant. One should expect that 
the solution will depend on both the size (i.e. density) of the 
finite elements and the size of the contact cells. The modified 
ESDU solution to this problem includes a calculation of the 
contact width and thus provided guidance for selecting the size 
of the contact cells. The FE-SI code used in this study allowed 
for a maximum of 41 cells to be used at each roller-raceway 
interface. The cells were to be refined in steps of 50 percent (R 
= 1.5), matching the approach used to refine the sizes of the 
finite elements. Using this information, the cell sizes were 
selected as listed in Table 2. All combinations of finite element 
size and cell size were analyzed. Table 3 provides identifiers for 
the cases analyzed

   

 
Table. 1 – BEARING DESCRIPTION FOR CASE STUDY A – (BEARING WITH ONE STRAIGHT CYLINDRICAL ROLLER) 

 
pitch diameter 57.4961 mm 
diametral clearance 0.000 mm 
roller axial length 21.988 mm 
inner raceway diameter 46.486 mm 
roller diameter, case A1 5.46 mm 
roller diameter, case A2 11.00 mm 
roller diameter, case A3 22.00 mm 
outer diameter, case A1 104 mm 
outer diameter, case A2 104 mm 
outer diameter, case A3 127 mm 
Young’s modulus 206.8 GPa 
Poisson’s ratio 0.30 

Note: width of outer and inner raceways match the axial length of the roller 
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Table 2 – CONTACT CELL SIZES 
   

cell size choice width of one cell (mm) 
1 .02286 
2 .01543 
3 .01016 

Table 3 – CELL AND MESH SIZES BY ANALYSIS CASE 
   

 mesh choice (see Fig. 2 

cell size choice 
 (see Table 2) 

A B C 

1 case 1 case 4 case 7 
2 case 2 case 5 case 8 
3 case 3 case 6 case 9 

 
 
 

 (a)  (b)  (c) 
   
Figure 1.   IDEALIZED BEARINGS USED TO STUDY NUMERICAL METHODS OF ANALYSIS.  (A) ROLLER SIZE A1,  

(B) ROLLER SIZE A2, (C) ROLLER SIZE A3. 
 
 

 (a)  (b)  (c) 
   
 

Figure 2.  FINITE ELEMENTS OF INCREASING MESH DENSITY USING REFINEMENT FACTOR OF R=1.5. 
 
 

Case Study A – Results for Deflection and Contact 
Pressures 

First the results for elastic deformation are presented. The 
movement of the center of the inner raceway relative to the 
outer diameter of the outer raceway was calculated for a range 
of loads. For this example, the FE-SI method was executed 
using the parameters for mesh size and contact cell size per 
“case 5” of Table 3. The calculations were done for the three 
rollers sizes depicted in Fig. 1. Results of the calculations are 
plotted in Fig. 3. Note that the REBM code predicts the stiffest 
response (largest load supported for a given displacement), 
followed by the FE-SI method and then the modified ESDU 
method. The significantly stiffer response predicted by the 
REBM code is a result of using the code option to calculate the 

contact stiffness parameter rather than input a value directly. 
When a user calculates the parameter using the REBM code 
rather than input a numeric value, then the following equation 
is used to calculate the stiffness parameter using units of 
Newton for force and mm for length. 

 

ܭ ൌ Ǥͺ ൈ ͳͲସ�݈�ቀ
଼
ଽቁݎ݈݈݁ݎ�݂�݄ݐ݈݃݊݁�ݏ݅�݈�݁ݎ݄݁ݓ�����     �ሺͳሻ 

 
Equation (1) can be found in Harris [13] with no qualifiers 

or discussion about the precision of the relation. While this 
equation may provide adequate solutions for some engineering 
uses, a study of the elasticity equations, literature, and the 
results of this study suggest that user’s of the REBM code 
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should carefully consider the limited precision of this relation. 
Optionally, user’s of the REBM code can estimate the contact 
stiffness by another method, and then can provide a more 
precise numerical value for the contact stiffness parameter via 
the input file. 

 

 
 
Figure 3.  CALCULATED REACTION FORCES FOR 
A RANGE OF RADIAL DISPLACEMENTS FOR THE 

EXAMPLE BEARING OF FIGURE 2(B). 
 
The results of Figure 3 include results for three different 

roller sizes while maintaining a constant value for the pitch 
diameter. The force and deflection results are essentially 
insensitive to the roller size, although the modified ESDU 
method does predict slight differing response for the three roller 
sizes. The REBM method does not use the roller size directly, 
and so only one result is provided. The force-deflection trend 
has a slight deviation from a linear relationship, a result 
consistent with the literature. 

Both the modified ESDU and FE-SI methods make use of 
the outer raceway outer diameter for calculation of elastic 
approach. To assess the influence, the elastic approach was 
calculated for a radial load of 12.4 kN and a range of values for 
the outer diameter. To complete this calculation using the FE-SI 
method, the finite element mesh and contact cell size used were 
those for case 5 of Table 3. Results of the calculations are 
provided in Figure 4. Note that the elastic approach increases as 
the outer diameter increases. Both methods provided similar 
trends. The elastic approach changes about 10% for the given 
range of values of the outer diameter. This example illustrates 
that for precise modeling of bearing deflection, the mounting 
conditions should be modeled carefully. In these examples, the 
innermost and outermost diameters were modeled as rigid 
circles. This modeling approach may or may not be suitable 

depending on the application and precision of results required 
for analysis or design. 

Further insight about bearing stress distributions and 
deformation can be obtained by viewing results using  graphical 
post-processing tools. Graphical displays of results for roller 
size A2 of Table 2 are provided in Figures 5-8. The maximum 
principle stress plots of Figures 5 and 6 closely resemble 
images in the literature of photoelastic studies of roller bearing 
stresses [for example, Ref. 13]. The pressure distribution plot of 
Fig. 7 illustrates that the predicted contact pressure is a close 
match to the parabolic distribution that was assumed by Hertz. 
Figure 8 shows the maximum principle stresses displayed on a 
deformed roller with deformations exaggerated by a factor of 
200. Although difficult to discern solely from the graphic, the 
roller diameter expands slightly along the axis orthogonal to the 
contact load. The modified ESDU method and the REBM 
method do not include this subtle effect in the calculation 
procedures. The graphical tools illustrated herein proved to be 
useful for gaining insight and for making certain that the 
modeling inputs were mistake free. 

 

 
Figure 4.  PREDICTED ELASTIC APPROACH OF 
OUTER RACEWAY TOWARD THE BEARING CENTER 
FOR CASE OF 12.4 KN RADIAL LOAD AS A FUNCTION 
OF SIZE OF OUTER DIAMETER.  

 

 
 

Figure 5.  MAXIMUM PRINCIPLE STRESS PLOT FOR 
CASE 5 OF TABLE 2.  
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Figure 6.  CLOSEUP VIEW OF FIG. 4, MAXIMUM 
PRINCIPLE STRESS PLOT FOR CASE 5 OF TABLE 2. 
   

 
 

Figure 7.   CONTACT PRESSURE DISTRIBUTION ON 
THE INNER RACEWAY FOR CASE 5 OF TABLE 2. 
 

 
 

Figure 8.  MINIMUM PRINCIPLE STRESS FOR THE 
ROLLER DEPICTED ON DEFORMED GEOMETRY, 
DEFORMATIONS EXAGGERATED BY A FACTOR OF 
200. 

To explore the influence of the selection of finite element 
mesh size and contact cell size on the predicted loads and 
contact pressures when using the FE-SI method, results were 
calculated for a range of modeling parameters per Table 3. For 
these examples a radial displacement of the outer diameter of 
0.0254 mm was imposed. Results of those calculations are 
provided in Table 4. The maximum and minimum values for the 
load and contact pressures are highlighted in Table 4. For a 
wide range of modeling parameters, the predicted reaction load 
varied by about 10% and the predicted maximum contact 
pressures varied by about 5%. These results of Table 4 were 
also used to study the leading order of accuracy, the next topic 
for discussion.

 
 

Table 4 – ANALYSIS RESULTS USING FE-SI METHOD FOR ALL NINE CASES DEFINED IN TABLE 3. 
 

 
 

 

number�of�cells�in�
contact

maximum�pressure�
(GPa)

width�of�pressure�
distribution�(mm)

number�of�cells�in�
contact�

maximum�
pressure�(GPa)

width�of�pressure�
distribution�(mm)

1 13 2.00 0.297 17 1.64 0.389 10.7

2 21 1.98 0.320 25 1.64 0.381 10.6

3 31 1.98 0.315 37 1.63 0.376 10.6

4 15 2.04 0.343 17 1.68 0.389 11.3

5 21 2.01 0.320 25 1.65 0.381 10.9

6 31 1.98 0.315 37 1.63 0.376 10.6

7 15 2.08 0.343 17 1.71 0.389 11.7

8 21 2.03 0.320 25 1.67 0.381 11.1

9 31 2.00 0.315 37 1.64 0.376 10.8

results�for�inner�raceway results�for�outer�raceway
case�number

reaction�force�
(kN)
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Leading Order of Accuracy 
While the results provided in Table 4 provides some 

information about the selection of contact cell and finite 
element grid sizes as relates to the precision of results, the 
leading accuracy of computational mechanics codes can be 
studied in a more formal manner. The ASME Performance Test 
Code Committee 60 was formed in recognition of the need for 
guidelines for the verification and validation of computational 
mechanics codes. The leading orders of accuracy calculations 
were done in the spirit of the ASME guide for verification and 
validation of computational solid mechanics codes [25]. 

Guo and Parker [10] used the FE-SI method in three-
dimensional mode to study some bearing contact problems. 
They quantified the order accuracy effect of the finite element 
mesh density. A similar study was done herein using the FE-SI 
method in two-dimensional mode. While Guo and Parker 
reported results for finite element mesh size, herein both finite 
element and contact cell size was studied. Guo and Parker [10] 
proposed using the following equation to assess the relationship 
of the finite element grid size used for the FE-SI method to the 
leading order of accuracy. 

 

ଵ   ൌ
୪୭�൬�ೇయషೇభೇయషೇమ

൰

୪୭�ሺ୰ሻ
������������������������������������ሺʹሻ 

 
Here, V is the solution, h denotes the element size, and h1 

> h2 > h3, r = h2/h1 = h3/h2, and p1 is an approximate solution 
of the leading order of accuracy. Additional background about 
this approach for leading order of accuracy is provided by 
Roache (Ref. 26). Herein, it is proposed that the equation can 
be applied to refinement of the finite element grid and also, 
separately, to refinement of the contact cell size. 

The reaction force was considered as the solution variable 
of interest. Results for contact reaction forces as the contact cell 
size and finite element grid size were varied systematically are 
organized and presented in a matrix format in table 5. In this 
table, the contact cell size is a constant on any row, and contact 
cell size decreases from the top toward the bottom row. The 
finite element size is a constant value for any column, and the 
finite element length decreases from the left toward the right. 
Note that the reaction force tends to increase as the element size 
decrease. However, for the contact cell size the reaction force 
tends to decrease at the contact cell size decreases. One can 
apply equation 2 to calculate a value for p1 for each row or 
column of Table 5. Results of such calculations are provided in 
Table 6. The values for the leading order of accuracy, shown in 
Table 6, for the finite element size influence (rows) are similar 
to those determined by Guo and Parker (Ref. 10) for a similar 
three-dimensional approach to bearing contact problems. As a 
reminder, the contact cell size is a constant for any row while 
the finite element mesh size is a constant for any column. The 
leading orders of accuracy estimates, p1, are greater than 1.0 for 
all of the nine tested cases. Also note that the orders of accuracy 
values are generally smaller for the columns as compared to the 
rows. This implies that numeric truncation error tends to be 

controlled more by the contact cell size compared to the finite 
element grid size. When using the FE-SI method the contact 
cell size needs to be selected carefully as it has the biggest 
influence on numerical truncation error and also has a 
significant influence on the solution times. 

 
 
Table 5.  REACTION FORCES FOR ALL FE-SI 
ANALYSES OF CASE STUDY A. 

 
 finite element mesh choice 
contact cell size choice A B C 

1  10.7 kN   11.3 kN  11.7kN 
2  10.6 kN      10.9 kN    11.1 kN 
3  10.6 kN      10.6 kN   10.8 kN  

 
 

Table 6.  RESULTS OF LEADING ORDER OF 
ACCURACY CALCULATIONS. 

 
Ref. Table 5 value of p1 

row 1 1.45 
row 2 1.78 
row 3 2.66 

column 1 1.49 
column 2 1.24 
column 3 1.28 

 

CASE STUDY B – BEARING WITH A FULL SET OF 
ROLLERS 

To further study the numerical methods for bearing contact 
problems, an example bearing geometry that has been studied 
by Guo and Parker (Ref. 10) was selected for study and 
exercise of the numeric codes. The geometry of the bearing is 
provided in Table 7. This example bearing has zero internal 
clearance. The outer diameter was assumed to be displaced by 
0.010 mm. It was desired to determine the reaction force, 
maximum pressures, and bearing stiffness using each of the 
three numerical methods. The bearing geometry is depicted in 
Fig. 9. The finite element mesh selected for this case study is 
depicted in Fig.10. In such a bearing, the load is shared among 
several rolling elements. To solve the problem by the modified 
ESDU method, the elastic approach for each rolling element 
was calculated from the bearing geometry. The radial load at 
each rolling element was determined via trail-error iterations, 
and the total reaction load was found by summing the x-
components of the radial forces. The bearing was also studied 
using the REBM code using the code’s internal estimate of the 
contact stiffness parameter. Finally, the bearing was studied 
using the FE-SI method by imposing the displacement of the 
outer raceway body. 
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Table 7.  GEOMETRY AND MATERIAL PROPERTIES 
OF BEARING FOR CASE STUDIES B, C, AND D. 
 
 

geometry 
roller type straight cylinder 
number rollers 13 
roller diameter 7.500 mm 
roller length 8.600 mm 
pitch diameter 39.00 mm 
outer diameter 71.12 mm 
clearance 0.000 mm 
  

material properties 
example BRG-S and BRG-S-2 

Young’s modulus 207 GPa 
Poisson’s ratio 0.3 

example BRG-N 
Young’s modulus 114 GPa 
Poisson’s ratio 0.3 

 
 

For this case study it was desired to calculate bearing 
stiffness properties. Guo and Parker [10] have proposed use of 
a 2nd order central difference approach to determine bearing 
stiffness using the FE-SI method. The suggestion for a 2nd 
order approach was based on the study of the leading order of 
accuracy of FE-SI example calculations. The central difference 
equation as was used by Guo and Parker and also used herein 
follows.   

 
 

݇ሺݍሻ ൌ
ݍሺܨ  ሻݍߜ െ ݍሺܨ� െ �ሻݍߜ

ݍߜʹ ��������������������������ሺ͵ሻ 

 
 

In this equation, F represents the reaction force and q represents 
the deflection. To use the formula one must select a “step size” 
for the deformation represented as Gq. Guo and Parker studied 
the optimal step size based on example calculations and also 
based on computing machine precision. Using their results for 
guidance, a step size of 5E-6 times the nominal deflection was 
selected for the study herein. Since the nominal imposed 
deflection used herein was 0.010 mm, a Gq equal to 5E-8 mm 
was selected. The same step sizes were used (in separate 
calculations) for both the X- and the Y- directions to calculate 
stiffness terms Kxx, Kyy,and Kxy using the FE-SI method. The 
same approach (including same step size) was used herein to 
estimate Kxx using the modified ESDU method. This required 
determining the radial loads on each rolling element via trail-
error iterations to nine significant figures. The REBM code 
approach makes use of derivatives of analytical expressions for 
stiffness terms (Ref. 19-21). 

 
 

Figure 9.  ILLUSTRATION OF BEARING USED FOR 
CASE STUDIES B, C, AND D. 
 

 
 
Figure 10.  FINITE ELEMENT MESH USED FOR THE 
FE-SI METHOD AND CASE STUDY B, C, AND D. 
 

A graphical display of results using the FE-SI method is 
provided in Figure 11. Because of zero internal clearance, all 
rollers to the right of the bearing center carry some radial load. 
Of course, the roller located on the x-axis is the most heavily 
loaded roller. A summary of the results for all calculation 
methods is provided in Table 8. The reaction load ranged from 
the lowest value of 4.5 kN using the modified ESDU method to 
the largest value of 10.6 kN using the REBM method. The 
reaction load using the FE-SI method was 5.0 kN, a value in-
between those of the other two methods but closer in agreement 
to the modified ESDU value. It must be noted that the REBM 
code includes an option to input a value for the contact 
stiffness, but such option was not exercised in this study. The 
estimates of the stiffness Kxx ranged from 470 to 1133 kN/mm. 
Guo and Parker [10] also estimated the Kxx term for this 
bearing using the FE-SI method in three-dimensional mode. For 
the bearing operating with 5.0 kN load, Guo and Parker 
calculated a value for Kxx = 400 kN/mm using FE-SI method 
in three dimensions while herein Kxx = 540 kN/mm using FE-
SI method in two-dimensional mode. The stiffness terms Kyy 
and Kyx were also determined using the FE-Si and REBM 
method. From both methods it was found that the Kyy stiffness 
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term is approximately equal to the Kxx stiffness term while the 
cross-coupling Kyx stiffness term is at least 3 orders of 
magnitude smaller than the diagonal terms. These calculations 
and results provide some confidence and verification of the FE-
SI code. The studies also highlight some limitations of 
modeling straight cylindrical bearings using the idealized line-
contact two-dimensional approach. Further confidence could be 
gained through validation studies comparing to experimental 
data, but especially for bearing stiffness properties the data in 
the open literature is very sparse. Results from clever and 
careful experiments to measure bearing stiffness properties 
would be a welcome addition to the literature. 

 
 

 
 

Figure 11.  MAXIMUM PRINCIPLE STRESS 
RESULT FOR CASE STUDY B. 

 
 

Table 8.  CALCULATED RESULTS FOR EXAMPLE BEARING BRG-S [TABLE 7] FOR 
IMPOSED MOVEMENT OF OUTER RACEWAY OF –0.010 MM IN THE X-DIRECTION. 

 
 Analysis Method 

calculated result   Modified EDSU REBM FE-SI 
reaction force (kN)   4.5 10.6 5.0 

max. pressure, inner raceway (GPa)   1.4 N/A 1.5 
max. pressure, outer raceway (GPa)   1.1 N/A 1.2 
contact width, inner raceway (mm)   0.15 N/A 0.16 
contact width, outer raceway (mm)   0.18 N/A 0.20 

stiffness, Kxx, (kN/mm)   470  1133 540 
stiffness, Kyy, (kN/mm)   N/A 1024 540 
stiffness, Kyx, (kN/mm)   N/A 0.02 0.00 

 
 
 

CASE STUDY C – BEARING WITH MATERIAL 
PROPERTIES OF NITINOL 60 

Studies have been done to assess the potential for Nitinol 
60 as a bearing material [27, 28]. For aerospace applications of 
mechanical components, the load-carrying density is one 
important figure of merit. For example, the load-carrying 
density of a gearbox is often stated as output power per unit 
mass of the gearbox [29]. For this study, the load-carrying 
density was defined as force per unit mass, and calculations 
were done to compare the state of stress of a steel bearing to a 
Nitinol 60 bearing operating at equal load-carrying density. The 
ratio of the density of Nitinol 60 relative to steel is about 0.85. 
The ratio of the elastic modulus of Nitinol 60 relative to steel is 
about 0.55 The FE-SI computing tool was used to assess the 
stress conditions of a steel bearing (example BRG-S) and a 
Nitinol 60 bearing (example BRG-N) operating at equivalent 

load-carrying density. The geometry and material properties 
used were per Table 7. An intermediate example was also 
calculated, example BRG-S-2, the bearing having material 
properties of steel but operating at the load of the BRG-N, 
Nitinol 60 bearing. This was done to illustrate the separate 
effects of reduced load intensity and reduced stiffness on the 
state of stress. Results of the calculations are shown in Table 9. 
The relatively low elastic modulus of the Nitinol material has a 
significant effect on the contact stresses. For equivalent load-
carrying density, the ratio of maximum contact pressures for the 
Nitinol 60 bearing relative to the steel bearing is about 0.68. 
The relative movement of the outer ring toward the inner ring is 
of course greater for the Nitinol 60 bearing compared to the 
steel bearing. Comparing the results for Nitinol bearing BRG-N 
and BRG-S-2 having the elastic properties of steel but 
operating at the reduced load of the Nitinol 60, one notes the 
reduced stress in the Nitinol 60 bearing at equivalent load-
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carrying density is largely an elastic effect. This effect should 
be kept in mind as research is carried out to explore the 
capabilities of Nitinol 60 as a bearing material. 

CASE STUDY D – BEARING WITH PITTED SURFACE 
The primary motivation of this work was preparation for 

studies of dynamic response of bearings with damaged 
surfaces. As a first step the FE-SI numerical tool was exercised 
using static solution mode. An example problem was prepared 
to have a surface pit located on the outer raceway member 
located at the x-axis. The bearing geometry for this example 
matched that of case study B. The load imposed on the bearing 
was a 4.8 kN force directed along the x-axis. To create an 
example pit, the sector of an ellipse was defined. The pit 
geometry defines the deviation from perfect form. The pit width 
used was approximately the size of the contact pressure width 
when the surface is undamaged.  The different pit depths were 
defined where the pit depth equals that of the nominal pit times 
a depth factor.  The nominal pit depth was selected as 0.0088 
mm which is approximately the depth locating the maximum 
shears stress for the undamaged bearing. The three 
multiplicative pit depth factors used equaled 0.5, 1.0, and 2.0. 
The pit profile of the deepest pit (depth factor = 2.0) was as 
illustrated in Fig. 12. The example problems were solved to 

determine the movement of the outer race member toward the 
bearing center from elastic deformations. Several solutions 
were obtained while positioning roller #1 near and over the 
location of the pit. 

The movement of the outer raceway as a function of the 
roller position and pit depth is plotted in Fig. 13. As the deepest 
pit is engaged, the outer ring movement increases from a value 
of about 0.010 mm when the roller is located fully on the 
undamaged surface to a value of about 0.0145 mm when the 
roller is located fully over the pit location. The patterns of 
maximum principle stress for the conditions of undamaged and 
damaged outer raceways for roller position directly on the x-
axis are provided in Fig. 14. For the deepest pit and static 
solution (slow speeds), the roller will become fully unloaded 
when the roller is over the pit location. For the most shallow pit 
studied, the roller becomes only partially unloaded when the 
roller is directly over the pit location. This example calculation 
demonstrated the FE-SI method for bearing surfaces with 
damage. It is anticipated that using such a computing tool in 
dynamic solution mode will provide insights for relating 
bearing surface damage magnitude to the expected magnitude 
and spectral content of forced vibration response. 

 
 

Table 9 – RESULTS FOR STEEL AND NITINOL 60 BEARINGS. 
 

 

example BRG-S BRG-S-2 BRG-N 
reaction force (kN) 5.00 4.24 4.24 

ring movement (mm) .0104 .0086 0.0155 
max. pressure, inner raceway (GPa) 1.48 1.36 1.01 
max. pressure, outer raceway (GPA) 1.21 1.12 0.83 
contact width, inner raceway (mm) 0.162 0.147 0.196 
contact width, outer raceway (mm) 0.199 0.171 0.235 

 
 

 
 

Figure 12.  EXAMPLE PIT PROFILE (DEVIATION FROM PERFECT FORM) THAT WAS 
INTRODUCED ON THE OUTER RACEWAY. 
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Figure 13 – MOVEMENT OF OUTER RACEWAY 
TOWARD BEARING CENTER AS FUNCTION OF THE 
POSITION OF ROLLER NUMBER ONE ASSUMING 
STATIC LOADS. SOLUTION WAS OBTAINED VIA FE-SI 
METHOD 

SUMMARY 
The purpose of this study was to assess some calculation 

methods for quantifying the relationships of bearing geometry, 
material properties, load, deflection, stiffness, and stress. Three 
numerical tools were used completing four case studies, and 
results were gathered and compared. The case studies were 
selected to verify and build confidence in the particular 
implementations of the numerical tools and also to examine 
some emerging technology trends. The following specific 
results and observations were obtained. 

 

1. The elastic movement of the outer raceway toward the 
bearing center is a function of the outer raceway diameter. 
Some of the classical methods used to estimate contact stiffness 
of line contacts cannot capture this, and other, subtle effects. 
   

2. The particular implementation of the combined finite 
element – surface integral (FE-SI) method was shown to have a 
leading order of accuracy greater than 1.0 over a wide range of 
finite element size and contact cell size selections. The contact 
cell size influences the order accuracy more so than does the 
finite element cell size. 
   

3. The modified ESDU method and the FE-SI method 
produced similar estimates for bearing reaction forces, contact 
pressures, contact widths, and radial stiffness. 
   

4. A steel and Nitinol 60 bearing carrying equivalent 
force per unit mass have very different contact pressure, contact 
widths, and deformations. For the example bearing and load 
intensity selected, the contact pressure of the Nitinol bearing 
was 1.01 GPa compared to 1.48 GPa for the steel bearing. The 
reduced stress is the combined influence of lesser density and 
smaller elastic modulus of Nitinol 60. The elastic effect is the 
dominating influence. 
   

5. A pitted bearing example was studied using the FE-SI 
method. For the situation of pit depth approximately twice the 
depth locating the maximum shear stress and static loading, a 
roller located directly over a pit became completely unloaded. 
In this example, the elastic movement of the outer ring 
increased to 0.0145 mm as compared to 0.010 mm for the 
undamaged bearing. 
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(a)   (b)   (c) 
 

Figure 14.  PATTERNS OF MAXIMUM PRINCIPLE STRESS FOR A BEARING WITHOUT AND WITH A PIT ON THE 
OUTER RACEWAY AT LOCATION OF X-AXIS.  (a) BEARING WITHOUT PIT.  (b) BEARING WITH PIT DEPTH 0.5 
TIMES THE DEPTH TO MAXIMUM SHEAR (c) BEARING WITH PIT DEPTH 2.0 TIMES THE DEPTH TO MAXIMUM 
SHEAR. 
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