Spaceflight Bone Atrophy: Problem Solved?

Adrian LeBlanc,1 Toshio Matsumoto1, Jeffrey Jones2, Jay Shapiro1, Thomas Lang1, Linda Shackelford1, Scott M. Smith2, Harlan Evans2, Elisabeth Spector2, Robert Ploutz-Snyder1, Jean Sibonga1, Joyce Keyak5, Toshitaka Nakamura4, Kenjiro Kohri14, Hiroshi Ohshima11, Gilbert Morales11

1Universities Space Research Association, 2U of Tokushima Graduate School of Medicine, 3Baylor College of Medicine, 4Kennedy Krieger Institute, 5UCSF, 6NASA Johnson Space Center, 7Wyle Science, Technology and Engineering Group, 8U of California at Irvine, 9U of Occupational and Environmental Health, 10Nagoya City U, 11JAXA, 12U of N Texas Health Science Center

Statement of Problem: What do we know from the supporting data?

- Bone loss: ISS (Table 1, Fig. 1); Skylab (single photon absorptiometry, Ca balance); Mir (DXA)
- Elevated bone resorption markers: ISS (Fig. 2); Skylab; multiple bed rest studies
- Elevated urinary Ca: ISS (Fig. 4); Skylab; multiple bed rest studies
- Uncoupled remodeling: ISS (Figs. 2,3); multiple bed rest studies

Table 1. QCT vBMD and FE Strength Changes

<table>
<thead>
<tr>
<th></th>
<th>Pre-ARED (Low Resis Ex)</th>
<th>vs ARED (High Resis Ex)</th>
<th>vs ARED + Alendronate, R+2 Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCT BMD (g/cm3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trabecular</td>
<td>-13.6 ± 6.41</td>
<td>-7.6 ± 6.01</td>
<td>-11.1 ± 9.82</td>
</tr>
<tr>
<td>Cortical</td>
<td>-3.2 ± 3.5</td>
<td>-2.6 ± 1.8</td>
<td>-0.6 ± 4.7</td>
</tr>
<tr>
<td>Trochanter</td>
<td>-13.5 ± 6.51</td>
<td>-7.2 ± 6.60</td>
<td>-1.9 ± 9.91</td>
</tr>
<tr>
<td>Cortical</td>
<td>-3.2 ± 3.51</td>
<td>-3.3 ± 2.71</td>
<td>-0.5 ± 5.0</td>
</tr>
<tr>
<td>Trabecular</td>
<td>-6.0 ± 5.5</td>
<td>-1.8 ± 2.8</td>
<td>-1.0 ± 4.8</td>
</tr>
<tr>
<td>Cortical</td>
<td>-14.1 ± 8.11</td>
<td>-2.7 ± 5.8</td>
<td>0.8 ± 10.12</td>
</tr>
</tbody>
</table>

Finite Element Strength (N)
- Non-Linear Stance -9.5 ± 5.61 1.7 ± 7.9 1.9 ± 9.72
- Non-Linear Fall -14.1 ± 8.11 -2.7 ± 5.8 0.8 ± 10.12

1Pre vs. Post, P < 0.05
2ARED + Alendronate vs. Pre-ARED, P < 0.05
3ARED + Alendronate vs. ARED, P < 0.05

Fig. 1 DXA BMD Changes

- Pre-ARED (Low Resis Ex) vs ARED (High Resis Ex) vs ARED + Alendronate, R+2 Weeks

Fig. 2 NTX Changes

- Pre-ARED (Low Resis Ex) vs ARED (High Resis Ex) vs ARED + Alendronate

Fig. 3 BSAP Changes

- Pre-ARED (Low Resis Ex) vs ARED (High Resis Ex) vs ARED + Alendronate

Fig. 4 Urinary Ca Changes

- Pre-ARED (Low Resis Ex) vs ARED (High Resis Ex) vs ARED + Alendronate

Conclusions

1) From a flight risk standpoint, the problem is considered manageable
2) Data show that exercise plus an anti-resorptive will be effective, reducing bone loss, bone resorption and urinary Ca excretion (lowering renal stone risk)
3) Targeted high resistive exercise alone can significantly attenuate bone loss but not necessarily completely

Potential Research Areas

General
1) What are the molecular biology details for bone loss in space?
2) Related to the above, what is the explanation for the large variability in response between individuals and bone sites?

Topics Related to Pharmaceutical Use in Space
- Do resorption markers remain elevated while improving bone homeostasis?
- Why do formation and resorption markers appear to remain essentially uncoupled? Do bone markers represent regional metabolic conditions?
- Is there a compartmental redistribution of bone with targeted high resistive exercise?
- How can high resistive exercise be made more efficient/efficacious?
- Does resistive exercise impact frequency and severity of inflight injuries and ways to prevent?

Topics Related to Pharmaceutical Use in Space

1) Drug stability for long missions
2) Operational plan needed, e.g., in cases of equipment failure or crew injury where exercise may not be possible
3) Suitability of other anti-resorptives (e.g., cathepsin K, Rank-I inhibitors)
4) Suitability of anabolic drugs