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How turbomachinery is used in Rocket Engines

• Liquid Fuel (LH2, Kerosene) and Oxidizer (LO2) 
are stored in fuel tanks at a few atmospheres.

• Turbines, driven by hot gas created by mini-
combustors, tied with shaft to pump, which 
sucks in propellants and increases their 
pressures to several hundred atm.

• High pressure propellants sent to Combustion 
Chamber, which ignites mixture with injectors.

• Hot gas directed to converging/diverging nozzle 
to give flow very high velocity for thrust. MSFC Fastrac 

engine



• Crack found during ground-test program can stop engine development

– If crack propagates, it could liberate a piece, which at very high rotational 
speeds could be catastrophic (i.e., engine will explode)

Motivation: Avoid High Cycle Fatigue Cracking in Turbomachinery 



Structural Dynamics Basics



A) Equation of Motion for Undamped System

1) Model Spring-Mass System to represent real structure

Modeling and Free Vibration of SDOF Systems
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2) Generate Equation of Motion (EoM) using Newton’s 2nd Law
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Where

• ucomplimentary, transient, homogeneous is the component of the solution when the 
RHS of the EoM is zero.  

‐ In physical terms, this is the response due to the internal dynamic 
characteristics of the structure, and comes about when there are 
non-zero Initial conditions (I.C.’s).

• uparticular, steady state, nonhomogeneous is the component of the solution when the 
RHS of the EoM is non-zero. 

‐ In physical terms, this is the response due to external forcing 
functions.

Solution to Equation of Motion (2nd Order ODE)

u(t)total = uparticular, steady state, nonhomogeneous + 
ucomplimentary, transient, homogeneous



1) simplest, worth remembering:

– Assume solution u=u(t) is of form

– Now plug these equalities into eq of motion:

For    A coswt = 0,   A has to = 0   , i.e.,  no response (“trivial solution”)

Therefore,

Define        l Eigenvalue  = w2 Natural Frequency2

So,   solution for u= u(t)    is where A  depends on the 
initial conditions (IC)         

Solution Methods for Homogeneous Component
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Prize question: is the natural 
frequency of a system the same on 
the moon  as on earth?

  Yes



Question: What is relationship of the natural frequency w (sometimes called 
“circular natural frequency) to the natural frequency f in hz?

Question: What is relationship of the period T to the natural frequency f
and the circular natural frequency w?

Natural Frequency Units, Period Relationship
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Damped Free Vibration of SDOF Systems 

Damper has parameter c 
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• 3 cases of solutions:

1) Critical Damping

Damping Categories
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If we give a critically damped or overdamped SDOF system an
initial displacement uo,  we get

No Oscillation

t

U

uo

2) Overdamped



3) Underdamped

Underdamped SDOF Equation of Motion for Free Vibration
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Response to Harmonic Excitation
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        which decays to zero after a few cycles,

 If the excitation frequency stays constant or slowly varies.
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Steady State Solution for Non-Homogeneous Component

r
w

W
where we define the Frequency Ratio  

st

st o

o
st o st

U

F
kU F U

k

W

  

where we define the "Complex Frequency Response"
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Magnification- Example 
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Given Damped system shown below:

a) What is the frequency of the steady-state dynamic 

response u(t)?

b) If the load is applied statically, what is the displacement? 

c) What is the approximate maximum response of the 

mass for any frequency of excitation?

d) At what approximate frequency does this occur?
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• Structures discretized using finite elements (rigorous mathematical 
representation of little piece of a solid)

• Machines, other mechanical systems can be modeled fairly accurately with 
lumped parameter MDOF models (i.e., lumped rigid masses, massless springs & 
dampers).

Multi-Degree-of-Freedom Modeling

m1 m2 m3

k1 k2 k3

u1 u2 u3

F3(t)

• Equations of Motion (EoM)
- Newton method:  easiest to use for translational systems, but very 
difficult for rotational motion



Modal Analysis – Obtain Natural Frequencies and Modes
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Solutions for Undamped, Free Vibration of MDOF Systems with N dof's.
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Example: Natural Frequencies and Modes of Axial Vibration of Cantilever Bar
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A)  Discretize into 2 finite elements, draw coordinate system:

Lump mass at nodes:   melement= A L
So
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Element stiffness:
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Equation of Motion in Matrix Form:

Apply Boundary Conditions (BC’s): Since u3=0, can cross out 
corresponding row & column.
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Finite Element Method Derivation p. 3
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7) Plug  in to  use "max" normalization
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Natural Frequencies, Modes, & Modal Matrix

Eigenvalue l = natural frequency w2
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Displacements for all 
locations of mode 
shape are either in-
phase or 180⁰ out-of-
phase with each 
other, but have phase 
relationship of i with 
excitation.

See great animations of MDOF systems by Dr. Dan Russell, Graduate Program in 
Acoustics, Penn State. Or https://www.youtube.com/watch?v=kvG7OrjBirI

https://www.youtube.com/watch?v=kvG7OrjBirI


Application of Structural 
Dynamics to Turbomachinery



• First obtain speed range of operation from 
performance group.  

– For Rocket Engines, there are generally several 
“nominal” operating speeds dependent upon 
phase of mission (e.g., reduce thrust during “Max 
Q”).

– However, since flow is the controlling parameter, 
actual rotational speeds are uncertain (especially 
during design phase) 

– For new LPS engine being built at MSFC, assuming  
possible variation +/-5% about each of two 
operating speeds.

Characterization of Excitations – Speed Range

In addition, speed generally 
isn’t constant, but instead 
“dithers”.†

†Implementation of Speed Variation in the Structural Dynamic 
Assessment of Turbomachinery Flow Path Components 
Andrew M. Brown, R. Benjamin Davis and Michael K. DeHaye 
J. Eng. Gas Turbines Power 135(10), 102503 (Aug 30, 2013) Paper No: 
GTP-13-1206; doi: 10.1115/1.4024960



• Forces are not, in general, perfect sine waves (although sometimes they’re close)

• We can deal with these in two ways:

• Represent forces as sum of Sines (Spectral, Frequency Domain Approach), sum 
response to each Sine

• Calculate response to actual temporal (time history) loading using “impulse response 
function”

• Spectral Approach: given a periodic but non-harmonic excitation

Quantify Engine Forces using Fourier Analysis

( ) ( )p p T  

ao

P(lb)

T



• Jean Fourier realized we can write loading p(t) as sum of average, cosines, & sines: 

where

• Textbook Example: Using Fourier Series, represent square wave excitation as:

Fourier Analysis
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• Since all real machinery has some level of unbalance and shaft whirl, sinusoidal 
(“harmonic”) loads at 1 and 2 times rotational speed (“1 and 2N”) will be 
generated, along with up to their 3rd multiples (also called “harmonics”)            
3-6N throughout turbopump. 

Characterization of Mechanical Excitation due to Unbalance

Space Shuttle Main Engine Powerhead Cross-Section



• Harmonic excitation at engine order = 
Number of flow distortions and up to 
their 3rd multiples arising from adjacent 
upstream and downstream blade and 
vane counts.

Characterization of Fluid Excitation

Bladed
disk

CFD mesh region 
ofJ2X fuel turbine

• Use CFD to generate Loading

2DMR-S.avi


• Excitation wave based upon a pump with 3 primary distortions (e.g. diffusers), 
within slightly asymmetric overall field.  

• Let primary excitation at 3N have an amplitude of 1, and asymmetric primary 
distortion have an amplitude of 0.1.

– each of these will have a harmonic, since they aren’t perfect sinusoidal distortions, 
such that the harmonic of the asymmetric is 0.05,  and the amplitude of the 
harmonic of the primary distortion is 0.25. 

– So

Engine Example of Application of Fourier Series

1 2 3 6( ) ( ) (2 ) (3 ) (6 )p t b Sin t b Sin t b Sin t b Sin t   

Where 
b1=0.1,  b2=0.05,   
b3=1.0,   b6=0.25

• Have to assess 
dynamics for each 
frequency component 
of excitation.

1 2 3 4 5 6
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1.0

1.0sin(3 )t

0.25sin(6 )t

0.1sin( )t

.05sin(2 )t
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Mode 13 at 38519 hzMode 12 at 36850 hz

Modal Animations 
very useful for 
identifying 
problem modes, 
optimal damper 
locations

Now Structure: Create FEM of component, Modal Analysis

Example:
Turbine 
Blades

j2xf_1bld_6b2_ls0119_23_uy.avi


Create “Campbell Diagram”

• Simplest Version of Campbell Diagram is just a glorified Resonance Chart.

(2x37 Nozzles)



Modal Analysis has Multiple Uses

• Redesign Configuration to move excitations ranges away from 
natural frequencies

• Redesign component to move resonances out of operating 
range.

• Put in enough damping to significantly reduce response

• Use as first step in “Forced Response Analysis” (applying forces 
and calculating structural response).



LPSP Turbine Stator Redesign to Avoid Resonance
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Courtesy D. O’Neal

₋ Since excitation simultaneously from 
upstream and downstream blades, critical 
to change design to avoid resonance.

₋ Extensive optimization effort performed to 
either move natural frequency out of 
range and/or change count of turbine 
blades to move excitation.

• Modal analysis of original design indicated 
resonance with primary mode by primary 
forcing function.  

stator_July8_v10_quick_3.mpg
stator_July8_v10_quick_3.mpg


Final and Original Campbell of Modes for Stator 
Vane 30ND Family

Range of +/-
5% on 
natural 
frequencies
to account
for modeling 
uncertainty 



• Damping is critical parameter for forced response prediction, so 
“whirligig” test program used to obtain data.

• Whirligig is mechanically-driven rotor with bladed-disk excited by 
pressurized orifice plate simulate blade excitation. 

• Key assumption is that this reflects true configuration.

Damping
36

A. Brown 
MSFC Propulsion  

Structural Dynamics

• SDOF Curve fit 
technique applied to 
selected top-
responding blades 
to derive damping 
from response.



• Data shows wide-variation in 
damping, but reasonable 
population (15-20 acceptable 
samples) for statistical 
characterization.

• Lognormal distribution fits 
obtained for each mode.

Damping Results from Whirligig
37

A. Brown 
MSFC Propulsion  

Structural Dynamics

A. Brown
MSFC Propulsion

Structural Dynamics

37

37

Nodal Diameter 5 5 5 5 5 5 5 5 5 5

Mode 3 4 5 6 7 8 9 10 11 12

Samples 18 17 17 14 12 8 16 20

Amp Mean 15.6 7.8 20.7 18.9 13.5 6.0 43.5 15.4

Sigma 3.2 1.9 9.2 18.6 8.4 0.9 17.7 3.2
Min 9.9 5.0 7.4 5.4 6.1 5.0 23.8 12.4

Max 20.3 11.2 35.4 54.2 33.6 7.7 87.7 24.1

Freq Mean 10967 13831 23068 28867 30588 32998 34643 37191

Sigma 17 69 282 345 211 256 220 132
Min 10936 13695 22921 28446 30165 32497 34357 37056

Max 10997 13908 23816 29662 30907 33311 35013 37346

Zeta Mean 0.404 0.702 0.146 0.193 0.242 0.304 0.131 0.209

Sigma 0.103 0.163 0.023 0.065 0.102 0.097 0.059 0.038
Min 0.314 0.520 0.106 0.116 0.139 0.162 0.078 0.153

Max 0.720 0.976 0.191 0.348 0.450 0.423 0.325 0.293

LogNormal Dist.:

0σ Equivalent 0.391 0.684 0.144 0.183 0.223 0.290 0.119 0.206

-σ Equivalent 0.305 0.544 0.123 0.132 0.149 0.212 0.078 0.172

-2σ Equivalent 0.237 0.433 0.105 0.095 0.099 0.155 0.051 0.143

-3σ Equivalent 0.184 0.343 0.090 0.068 0.066 0.113 0.033 0.119
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Can Also Use Modal Analysis in Failure Investigations

• Examination of Modal Stress Plots provides link to location of observed cracking.

SSME 
HPFTP
1st Stage 
Turbine 
Blade
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• Frequency and Transient Response Analysis uses Concept of Modal 
Superposition using Generalized (or Principal Coordinates).

• Mode Superposition Method – transforms to set of uncoupled, SDOF equations 
that we can solve using SDOF methods.

• First obtain [mass.   Then introduce coordinate transformation:

Now, if resonance, forced response required, need to know about 

Generalized Coordinates/Modal Superposition

          ( )M u C u K u P t       

    

             ( )

              
M

N Mu

M C K P t



  

 

     

            \ \ ( ) .` ` `
T

I P t      \C



   
2

2 2

  

1
 ( )

    

1 2

   

T

m
m

m

m

m m

F
t




l


w w



    W W
     
     

22u u u Fw w   

for the SDOF equation of motion,

                     

   2 ( )
T

m m m m m m m
u P t  w l    

2 22

1
( )

1 2

FoU
k


w w

W 
   W W   
            

   

So we get the same equations in :

mu cu ku F  

• For “Frequency Response” Analysis, 
apply Fourier coefficients coming from 
CFD such that excitation frequencies 
match Campbell crossovers.

SSME HPFTP 1st Blade Frequency Response

r
w
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Forced Response Analysis in Failure Investigations

• SSME HPFTP 1st Stage Impeller.

Mode 
shape

Frequency Response AnalysisCrack location 1st splitter



Cyclic Symmetry in Turbine Components

• Many structures possess some kind of symmetry that can be used to 
simplify their analysis.

• A cyclically symmetric structure possesses rotational symmetry, i.e., the 
original configuration is obtained after the structure is rotated about the 
axis of symmetry by a given angle.

• Instead of modeling entire structure, only model one sector. 

• For turbomachinery structures, structural analysis is generally only possible 
by taking advantage of huge reduction in model size by using cyclic 
symmetry.

Section courtesy of
Dr. Eric Christensen,
DCI Inc.



Characteristics of Cyclic Symmetric Modes

• Most Nodal Diameter modes exist in pairs, 
same shape but rotated by /ND

• For purely cyclic symmetric sections, 
highest Nodal Diameter possible is N/2 for 
even # sectors, (N-1)/2 for odd # sectors.

• First family of modes:

‐ Has unique eigenvalues 

‐ Has unique eigenvectors

‐ All segments have same mode shape

• The next family of modes:

‐ Pairs of degenerate (identical) 
eigenvalues

‐ Non-unique eigenvectors 

• The last family of modes:

‐ Only exist if N is even

‐ Has unique eigenvalues & eigenvectors.

Flat Plate 
Example
N = 8 
Segments



Example - SSME Fuel Turbopump 3rd Stage Impeller

• Cyclically symmetric sections have N = 6, so max ND=N/2=3 for 
those sections.

• However, much of impeller is disk-like, 

with axisymmetry, having infinite

# ND’s.

• Codes generate “Harmonic Families” 
of modes which only contain Nodal 
Diameter modes according to 
following stair-step pattern: 

• H0 contains ND= 0, 7,      14,      …

• H1 contains ND= 1, 6 ,8,  13, 15,…

• H2 contains ND= 2, 5, 9,  12, 16,…

• H3 contains ND= 3, 4 ,10,11, 17,       



Implications of Cyclic Symmetry - Generalized Force

• Generalized (or Modal) Force defined as

{F}m= {}m
T {F}.    

• This is just the dot product of each mode with the excitation force vector 
and means that the response is directly proportional to the similarity of the 
spatial shape of each mode with the spatial shape of the force.

• For pure harmonic waves, the “Orthogonality Principle” states

sin( )sin( )
0

{n m






 




 when n=m

 
 otherwise

• Think of the {} as a continuous function, and the force the same way.  
₋ Then the Dot Product is the same as an integration of the product of the two 

functions. 
₋ So this says that the only non-zero result of an excitation wave shaped like a 

Sine and a mode shaped like a Sine is for the components of those waves that 
have the same wave number!



Have to determine Nodal Diameter of 
Modes to identify Resonance

   3sin0Pp 

• For disks and disk dominated modes, 5ND Traveling Wave will excite a 5ND mode

5ND standing 
wave mode of
Impeller (modal
test using 
holography)

5ND travelling wave Mode of Bladed-Disc

• On the other hand, 3ND 
excitation (perhaps from pump 
diffusers)  will not excite a 5ND 
structural mode.



• “Triple Crossover 
Points” (speed, w, and 
ND) needed for 
resonance of pure 
shroud (disk) modes.

• ND mode at exact 
spatial number of 
distortions in 
excitation.

Impeller Campbell Diagram



• Sampling by discrete number of points on structure of pressure oscillation 
results in spatial Nodal Diameter excitation at the difference of the two counts.

• E.g., a 74 wave number pressure field (coming from 2x37 vanes), exciting 69 
blades results in a Nodal Diameter mode of 69-74=-5, where sign indicates 
direction of traveling 5ND wave (plot courtesy Anton Gagne).

“Blade/Vane” Interaction causes different ND excitation

Direction of 
pressure field 
wave

Direction of 
resultant wave

69blades_74vanes.avi
69blades_74vanes.avi
69blades_74vanes.avi


• Chart identifies Nodal Diameter families that can be excited

• All modes in Campbell have to be from these families

– E.g., Nodal Diameter 5, blade mode 3 (torsion)

Tyler-Sofrin Blade-Vane Interaction Charts

Upstream Nozzle 

Multiples 37 74 111 148

Downstream 

Stator Multiples 57 114 171 228

Blade multiples Blade multiples 

69 32 -5 N/A N/A 69 12 N/A N/A N/A

138 N/A N/A 27 -10 138 N/A 24 -33 N/A

207 N/A N/A N/A N/A 207 N/A N/A N/A -21

• Temporal Frequency of Excitation is at the engine order of the 
distortion.

• Much of chart is marked “N/A – not applicable” because…..

– Highest number of ND waves in a cyclic symmetric structure is 
N/2 or (N-1)/2



Example - LPSP Turbine Blisk Aliasing Tables, 
Non-Problematic Modal Evaluation

• 123 blades allow (123-1)/2=61 Nodal Diameters

• Many crossings judged low risk, or acceptable risk for non-flight program

- 15ND, 33ND, and 45ND crossing modes eliminated due to probable low 3X forcing 
function, high frequency

- 52ND modes extremely complicated, high frequency

- Many modes eliminated due to non-adjacency of forcing function 

• Also have to consider mechanical excitations order 1-6N 

• In this case, no 1-6ND modes have crossings with appropriate forcing function.

1st Stage
Nozzles 2nd Stage Stators Exit Guide Vanes

87 174 261 93 186 279 97 194 291

blades

123 36 51 138 30 63 156 26 71 168

246 159 72 15 153 60 33 149 52 45

369 282 195 108 276 183 90 272 175 78

0 87 174 261 93 186 279 97 194 291



Turbine Blisk Campbell for Problematic Modes in 100% PL Range

51



Turbine Blisk Problematic Modes Possible Resolutions

Natural Frequencies

ND
mode pair 

number 70% PL 100% PL mode shape description
excitation source and 

order potential solution

36 5 28955.47 28964.54

1st Torsion NOTE 
12/31/13- 2ND blade -are 

nozzles problem?
87=1 x 1st st 

upstream nozzles

change # nozzles to 89 to 
move lower bound of 70% 

above mode.

51 9 58040.23 58048.62
1st blade chordwise 2nd 

bending
174= 2 x 1st st 

upstream nozzles

change # nozzles to 89 to 
move lower bound of 70% 

above mode.

51 11 75845.08 75878.04
1st blade spanwise TE 2 

wave
174= 2 x 1st st 

upstream nozzles
CFD to determine 
magnitude of 2x

60 12 78335.00 78349.16 2nd blade bending
186 = 2 x upstream 

2nd st stator
CFD to determine 
magnitude of 2x

60 13 79511.67 79524.37 2nd blade ?
186 = 2 x upstream 

2nd st stator
CFD to determine 
magnitude of 2x

51 14 85944.41 85972.20
1st blade TE spanwise 1 

wave
174= 2 x 1st st 

upstream nozzles
CFD to determine 
magnitude of 2x

60 14 86007.76 86035.52 1st blade TE 1.5 wave

186 = 2 x 
downstream 2nd st 

stator
CFD to determine 
magnitude of 2x

60 16 92827.38 92835.74 1st blade TE 0.5 wave

186 = 2 x 
downstream 2nd st 

stator
change # stators to 92, 

mode will be above range

blisk_36ND_m10_28965hz.mpg
blisk_51ND_m18_58049hz.mpg
blisk_51ND_m22_75878hz.mpg


𝑠 =  Sin[3𝑡 + 2 +  Cos[4𝑡 + 3

Spatial Fourier Analysis helpful to identify ND number 
of both excitation and modes

• First perform Temporal Fourier 
Analysis at each value of , using 
Complex Form (more efficient than 
harmonic form)
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• Let’s say we have measured 
pressure field 

p(t,)

that has the unknown
temporal and spatial form:



• Now look at obtaining spatial components for each of the temporal fourier 
components (“bins”).
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Spatial Decomposition of Each Temporal
Fourier Component



2-D Fourier Transform Shows Spatial Complexity of J2X turbine flow field 
and response, used in evaluation of forced response methodologies
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• Due to manufacturing tolerances, the turbine blades on a bladed disk will never 
be identical

• Result is that the bladed-disk modes (e.g., ND17, 1st Torsion) will have slightly 
varying natural frequencies and mode shapes; typical variation is +/- 1.5%.

• Variation itself called Mistuning, which generates two effects in addition to 
bifurcation of individual modes into n*individual modes:

– Localization – mode shapes warp such that maximum deflection is at a single 
location, rather than at every high point in a “tuned” nodal diameter mode.

– Amplification – most important effect – the maximum resonant “mistuned” 
response is frequently up to twice as much as the “tuned” maximum resonant 
response.

• Probabilistic analysis techniques required since every bladed-disk will be 
different

• Innumerable papers and Ph.D. theses have been devoted to this topic over the 
last 40 years.

• Tractable techniques for predicting level of amplification for a design have only 
existed since 2004.

Mistuning



Localization due to Mistuning

Ref: Rao, J.S., Mistuning of Bladed Disk Assembies to Mitigate Resonance, Altair Engineering, 2006



• Maxiumum amplified blade is not blade with most mistuning, appears to be most 
pronounced near locations of “eigenvalue veering” on Nodal Diameter plot.

Amplification due to Mistuning

Ref: Castinier, M. P., Pierre, C., Modeling and Analysis of Mistuned Bladed Disk Vibration: Status and Emerging
Directions, Journal of Propulsion and Power, Vol. 22, No. 2, March-April 2006.

• Can predict amplification for a given design 
using “MISER” by assuming a std deviation of 
frequency mistuning and generating a nodal 
diameter diagram for modes of interest.

Amplification 
Results for Monte 
Carlo Analysis of 
10,000 Bladed-Disks



Conclusion

• Structural Dynamic Analysis of Turbomachinery is critical aspect 
of design, development, test, and failure analysis of Rocket 
Engines.

• Process of Analysis starts consists of modeling, modal analysis 
and characterization, comparison with excitation field, and 
forced response analysis if necessary.

• Thorough understanding of Fourier Analysis, Vibration Theory, 
Finite Element Analysis critical.

• Knowledge of Turbomachinery Design and Fluid Dynamics very 
useful.


