High Output Maximum Efficiency Resonator (HOMER) Laser for NASA’s Global Ecosystem Dynamics Investigation (GEDI) Lidar Mission

Paul Stysley, Barry Coyle, Greg Clarke, Demetrios Poulios, Richard Kay

The HOMER cavity is a positive branch unstable resonator (PBUR), employing a Graded Reflectivity Mirror (GRM) with a Gaussian reflectivity profile. This produces high beam quality (TEM00) and produces high pulse energies typical of master oscillator/power amplifier (MOPA) designs, but with higher efficiency. Less optics, less volume/mass, excellent pointing.

Parameter
- **HOMER Output**
 - Energy: 17 - 9 mJ
 - Pulse Width: 10 +/- 1 ns
 - Rep Rate: 250 - 100 Hz
 - LDA Duty Cycle: ~2%
 - LDA Current: 50 A
 - LDA Derating: 50%
 - TRL 6 Mass: 5 kg
 - Total QS Shots HOMER Design: 15+ Billion
 - Optical Efficiency: 17%
 - Elect Efficiency: > 7%

Environmental Testing:

Vibration Testing:
- The General Environmental Verification Standard (GEVS) Qualification Vibration Specification was applied. The purpose of this test was to qualify the HOMER design through TRL 6 vibration testing. Since no launch vehicle was selected at that time, the HOMER was designed for a 0 C to 40 C survival temperature range. Therefore, using GEVS component qualification standards, HOMER was temperature cycled from -10 C for 4 hours and then to 50 C for 4 hours at total of 8 times. HOMER’s performance was checked at regular intervals to assure proper laser output quality.

TVAC Testing:
- HOMER was designed for a 0 C to 40 C survival temperature range. Therefore, using GEVS component qualification standards, HOMER was temperature cycled from 0 C to -10 C for 4 hours and then to 50 C for 4 hours at total of 8 times. HOMER’s performance was checked at regular intervals to assure proper laser output quality.

Final HOMER Design:

Incorporating all opto-mechanical lessons learned from HOMER-2, LOLA, MLA, CALIPSO, GLAS, & ESA’s ALADIN.

Now that HOMER is the GEDI laser, it is being mechanically upgraded; incorporating a beam expander, improved optical bench, and a flight-like laser electronics box. The ETU and flight laser systems will be built in-house and will go through environmental testing.

Lab Results:

Optical Layout of the HOMER-2 Lifetest:

- A 1064nm fiber coupled laser diode is reflected off reference cubes mounted on the enclosure and the base plate. These determine any movement of the laser cavity vs. the outside environment.

Final HOMER Design:

- Incorporating all opto-mechanical lessons learned from HOMER-2, LOLA, MLA, CALIPSO, GLAS, & ESA’s ALADIN.

Optical Bench Pointing, Mass and Modularity Requirements were met with Aluminum. Materials trade study with Aluminum and Beryllium complete. Analysis shows mechanical and thermal requirements met with margin.