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Abstract. This article reports an investigation of the effect 01 solar rivi'i. tnWfpesure on 
the motion of an artificial satellite. The theory has been applied to the orbit of the Vanguard 
I satellite, and is found to produce significant perturbations in the perigee height of that 
satellite. In the case of a satellite with a large ratio of area to mass the major terms introduced 
by solar radiation pressure can reduce the perigee distance at the rate of 1 to 2 km per day, 
so that the lifetime of the satellite will become considerably short.er  than it would be without 
this effect. 

Introduction. The perturbing effects of solar 
radiation pressure on satellite orbits have been 
generally considered by celestial mechanicians to 
be negligible. However, the difference between 
observed and theoretical values of perigee height 
for the Vanguard I satellite have suggested a re-
examination of radiation pressure as a possible 
source of the discrepancy. We have carried out an 
investigaLion of the radiation-pressure perturba-
tion and developed an analytical theory of 
resonance for th case in which the perigee 
follows the motion of the sun. It is found that 
when resonance conditions are nearly satisfied 
the radiation pressure may produce substantial 
orbit perturbations over an interval of several 
months. For a satellite with a large ratio of 
area to mass the major terms introduced by 
solar radiation pressure can reduce the perigee 
distance at the rate of 1 to 2 km per day, so 
that the lifetime of the satellite becomes con-
siderably shorter than it would be without this 
effect. Radiation pressure is also found to produce 
significant perturbations in the orbit of the 
Vanguard I satellite which remove the principal 
discrepancy between theory and observation in 
the analysis of the Vanguard I orbit [Mnsen, 
Bailie, and Bryant, 1960]. 

The terms of long period make the principal 
contribution to the orbit perturbations. In the 
present investigation we have therefore neglected 
the effect of the earth's shadow which has the 
period of the satellite's mean motion. The 
shadow effect does not change the nature of

the perturbations, although it produces a change 
in their amplitudes. We have also neglected all 
other periodic terms having the mean anomaly 
of the satellite in the argument. 

The vectorial method is used in the develop-
ment to obtain several kinematical relations. 
The equations for the scalar elements are deduced 
from the equations for the vectorial elements. 
All elements except the semimajor axis contain 
long-period terms, but the semimajor axis is 
affected by short-perio(l variations only and is 
therefore not subject to substantial perturba-
tions. 

Perturbations in the orbit plane. Let us 
designate the gravitational constant by G, the 
mass of the earth by M and its equatorial radius 
by p. Let R be the unit vector directed along 
the normal to the orbit plane, P be the unit 
vector directed from the center of the earth to 
perigee, and let Q - R X P. The position and 
the velocity vectors of the satellite are repre-
sented by r and v, respectively; the radius vector 
of the satellite will be designated by r, the true 
anomaly by I, the mean anomaly by 1; and the 
other elliptic elements will be designated, using 
the standard notations, by w, &, i, e, a, n. The 
mean longitude of the sun on the ecliptic will 
be designated by X', and the mean motion of the 
sun will be designated by n'. Let be the incliiia-
tion of the equator to the ecliptic, i the unit 
vector directed from the center of the earth 
toward the vernal equinox, k the unit vector 
normal to the earth's equator, and let j = k X i. 
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Finally, let u° be the unit vector directed from into consideration, we deduce 
the center of the earth toward the sun. Neglecting I 
the eccentricity of the earth's orbit, we can put r = -== {_	 (	 j 
no = i cos X' + j cos € sin X' - 

+	 Sin 2DPP 
+ksin€srnX	 (1) 

The solar radiation pressure will be +	 sin 2fQ Q 

•	 F = Fu°	 F < 0	 (2) [r 
+ i (	 + e cos f 

F = constant for a spherical satellite; for the 
•	 satellite of nonspherical form	 we must make a cer- 1 

+	 COS 2f) + 1 - e2JPQ -tam assumption about the average value ofF and 
use the average value in the development. We

-
r

(1	 cos 2f) shall deal with the vectorial element 

g = eP +	 - e]QP} (10) 

and with the time variation of this yeçtdr with 
•	 respect to a system of coordinates rigidly con- - In order to separate the long periodic part in 

nected to the osculating orbit plane. In other F from the short periodic one we must develop 

words, we shall deal with the motion of P in the coefficients of the dyadic products into 
this plane. For that purpose it is convenient Fourier series with respect to the mean anomaly 

to use Herrick's equation [Herrick, 1948] and retain only the constant terms in this 
development. Using Cayley's tables, we find 

GM dg/dt	 r F	 (4) that th	 constant parts of the coefficients of 
PQ and of QP are cqual to ±(1 - &'). The 

where constant parts of the other coefficients are equal 
r=2rv—vr—rvI	 (5) 

r and v in this case ' are given, not with respect 
to our inertial system, but with respect to a 
system rigidly connected to the osculating orbit 
plane. The notations rv and yr represent the 
'dyadic products; in other words, they are the 
produCts

column vector row vector

and I is the planar idCmfactor (the planar uhit 
matrix). Substituting 

r = Pr cosf+ Qrsinf (6) 

\/GMsinf 

'v"a(l - e2) 

'\7i(cosf+e) (7) + Q 

I=PP+QQ (8) 

into (5), and, taking 

GM=n2 a3 (9

to zero. Thus, we have tor the long. perlodlic 
part of F 

[rJ= na2 ../i7(PQ QP) 

but 

RX I = R X (PP+ QQ) QP - PQ 

and we have a simple relation 

	

[F] = _ na2 VI?R X I	 (11) 

Substituting (3) and (11) into (4) we deduce 
for tile long periodic part in eP 

d(eP)	 3 na2 11—e R 
X F	 12 

- 2 GM	 ) 

We see that the time variation of eP is normal 
to the component of F lying in the orbit plane. 
The vector P in the moving system of coordinates 
is affected only by the rotation about R. The 
angular velocity of rotation 

Rthr/dt 



and 

dir _	 3F	 2 

	

(13)	 —	 . 

+cOs2 (1/2) sin2 (c/2 cos w + + A') 

+ cos2 (1/2) cos2 (c/2 cos (w + & - A') 

.i na	 - e2	 +sin2 (i/2 cos2 (c/2 cos (w -	 + A') n . 2 

2	 GM	
RX F	

/)sm (c/2) cos(w —— A') 2	 . 2 

or	
Sill E cos ( + A') 

Thus

dir 
dtdt 

ft follows from (12) and (13) 

dc	 dir 
P+eQ 
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-J.

de	 3na2/I 

dt — +2	 GM	
Q.F- (14) 

2 dir	 3na	 1—c 
•	 e=	 PF (15) 

2	 GM 

Substituting
2. P = i[+cos (z/2 cos (w +	 ) 

+ sin2 (i/2 cos (w - 

•	 +j[+cos2(i/2sin(w+a) 

- sin2 (1/2) sin (o 

+ksinisinw (16) 

into (15) and 

Q = i[—cos2(i/2sinw+() 

-, sin2 (1/2) sin w - 

+ j[+cos2 (1/2) cos (w +	 ) 

- sin2 (1/2) cos	 — 

•	 +ksinicosw (17) 

into (14), and taking (1)—(2) into account, we 
obtain

de_.na2Vi5 

{+cos2 (i/21 sin2 (c/2 sinw + a + A') 
2 .	 2	 . +cos (/2. cos (e/2) sin(w + a — A) 

+sin2 (1/2) cos2 (/2 sin (ci, — a + A') 

+sin2 (1/2) sin2 (c/2) sin (w - a — A') 

— sin i sin e sin (w + A') 

+ jSifli8inES1fl( — X')l	 (18)

	

+ -sinisin cos(c — X')}	 (19) 

Perturbations in the position of the orbit plane. 
The angular velocity of rotation of the osculating 
orbit plane, considered as a rigid body, 

na2	 r RF 

	

— 2aGM	
20 

The part of r independent of 1 is 

and, consequently, the long periodic: part. f 
1is

- F 1	
na2e	 PR•F	

(21) L'IiJ -	 2	 GM 

The variation of R is caused only by the rotation - 
of the osculating orbit plane,- and we have then 
for the long periodic part in R 

dR/dt = —R X ['1 

or

dR —
	

_na2eQR.F	
22 

dt - 2 GMV/1e2 

and we conclude that the long-period time 
variation of R, caused by the radiation pressure, 
consists of the rotation of R about P with the 
angular velocity proportional to the cosine of the 
angle between the direction to the sun and R. 

This time variation is zero at the moment 
when R is normal to u°, in particular when R is 
normal to the ecliptic. From equation (22) we 
can also deduce the equations for i and a. 'I'he 
angular veloity [] can be decomposed iiito 
the geometrical sum of (1) the angular velocity 
di/dt of the rotation of the orbit plane around the 
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line of nodes and (2) the angular velocity. sin io, 

d(?,/dt of the rotation around the vector P sin w 
+ Q cos w. We have for the long-period varia-
tion in i and £2, taking (21) into account, 

(Pcosw — Qsinw) 

+(Psinw+Qcosa) . sini%-

	

3	 n.a2e	 PRF 
z/j7 GM 

We deduce from this last equation, after the 
scalar multiplication by P cos w - Q sin w and 
by P sin o + Q cos w and taking (P cos w - 

Q sin w)k	 0 and Pk	 sin i sii o into
consideration, 

di	 3 na2cR-F cosw 
dt	 2GMViR	

(23) 

3 na2cR F sin w 
sin t-- =
	

(24) 

Taking 

R = .isinisin& - jsini cos& + k cosi (25) 

and (1)-(2) into consideration, we have after 
some easy trigonometrical transformations 

di'	 3	 Fna2e 
dl	 4 MvT 

.2 • {+smn sin (€12) sin (o + £2 + A) 

- sin i sin2 (€/2) sin (w - £2 - A') 

+ sin i cos2 c/2 sin (w + £2 - A') 

- sin i cos2 (€/2) sin (o - £2 + A') 

+ cosisin€sin(w+X') 

COS SW t .S1I (w 

•	 . 1	 PU(te
= +jT 

• {+sin i in2 (/2) cos (w + £2 + A') 

- sin i sin2 (€/2) cos (w - £2 - A')

+ sin i cos2 (€/2) cos (w + £2 - A') 

- sin i cos2 (€/2) cos (o, - £2 + A') 

+ cos i sin € cos w + A') 

- cos i sine cos (w —X')l	 (27) 

These equations could also be obtained in the 
standard way. 

The tale gratiQn problem. If we assume that 
we do not have sharp resonance conditions, the 
first-order perturbations can easily be obtained 
by the integration of equations (18), (19), (26), 
and (27), assuming that the elements in the right-
hand sides are replaced by their mean values. The 
oblateness of the earth produces the secular 
motions of the node and of the argument of the 
perigee, for which we have 

Gk.2 p2 fl(l -	 2 

0O +	 2(1	 e2 2	
(t - 

a(1—e) 

The resonance case. The resonance case 
deserves special att,cntipn and a special treat-
ment. rfle most interesting resonance occurs 
when the perigee of the satellite closely follows 
the sun, i.e., when the critical argument, in the 
terminology of celestial mechanics, is 

c -I- £2 - A' 

The term with this argument is the most in-
fluential one in the development of the radiation 
perturbations in the case of Vanguard 1. 

Iii order to simplify the exposition we shall 
adopt the system of units in use at the Vanguard 
Computer Center in the computation of the 
general oblateness perturbations. We put

- 

G=1	 111=1	 p=l 

and we use the system of coordinates rotating 

(26) iii i loon I y iii tIme eqi matorial plane wiLl angular 
velocity equal In the mean motion of LI sun ii 
the ecliptic. In our exposition we follow the 
line of thought laid (town by Brown in his 
planetary theory [Brown and Shook, 1933J, 
modifying the form of the disturbing function 
to serve our purpose, and, as Brown did in the
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planetary case, we will reduce our problem to k2	 1	 3z3 
- + an equation similar in form to the equation of L(x2 -	 (x.3 - 

the motion of a mathematical pendulum. 'Ilic 2 - 

modified canonical set of Poincaró +	
'

—flj 2( x2 —
+ k2 K	 (30) 

—
where we put 

-= —w—+A'
k2K = —Frn ens2 (i/2) eo$2 (E/2) > 0 

=	 = 1 + w + & - X'	 (28)
We have	 - 

=	 — cosi)
dx,	 Ft	 dy,	 II 

Y3 -	 + X dt	 äy,	 de	 - 

is especially convenient here. The corresponding The arguments	 2 and Y3 are not present in (30), 
Hainiltonian function consists of several parts: -. and from	 - 

1. The part	 .	 . dx2	 Ii —	 dx	 — 

2a
it follows that 

is contributed by the elliptic motion of the 
. x2	 a2 = constant 

satellite. 

2. The part x3 = a3	 coiistant 

•	 cos i and we also have the integral of Jacobi 

is generated by the motion of the sun. H = h 

3. The secular. part If the satellite is approximately of the size and 
3	 .	 2	 . the form of Vanguard I, the perturbations in 

• 	
.

the eccentricity are small, even if the resonance is 
a sharp one. The ratio F/k, in this case is also 

is produced by the oblateness of the earth. small, and the coefficient K might be considered 
to be üivariable. Let us introduce, a new variable 

4. The periodic part instead of x,, and a new independent variable 

-	 Fae cos' (i/2) cos'(f/2)	 • T instead oft, by putting 

.cos(	 +'&	 ') x,	 a +	 (32) 

comes from the development of the disturbing /k2 dt = dT	 (33) 

potential —F O r into a trigonometric series. where a, is a constant to be determined. 
Thus,	 e have Equations	 31,	 if	 transformed • to	 the	 new 

.'
variables, becomes 

1 
II = — + n'	 /' (i — e2) cos i 

2a	 •

'

(34) • 

,	 (i	 —.	 .	 2	 . 
2l1	 _	 2 

+	 3/2	 — 2 Fac cos (i/2

= -- -	 = +- 
dT	 ay,	 dT 

3	 2 
a (1	 e ) where 

cos' (/2) cos (ci' + &^ —	 X')	 (29)
= --=	 --- - 

or, taking (28) into consideration, v"k2	 3z, 

- H	 — s + n'(x2 - x, — x3) '	 + k2	
2 

+ K cos y,	 (35) 
2x,,.	 . a,
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and where 

ii = 1	 3a3 

L(a2 '-,	 -. (az	 )4 P	 - k2 K'',,	 (42) 

and 0 < k < 1 is the constant of integration. 2

I	 (3) 'We deduce 
2as.—a,)j 

It	 s determine the constant a, in such a way - 2kv cn(vT, k	 (43) 
dT 

that the condition
' and, taking (32), (33), (42), and (43) into con- 

n' -	 -- -'	 (37\ 
2	 '	 / 'sideration, we' obtain 

is satisfid'. This last equation days that in the ,
= a
	 + 2k.i-i--cn(vT, k) 

first apfroximation' t1ä arguient y	 does not 
have a secular motion. In other words, to assert If the motion of y is progressive, i.e., if z' 	 has 

' (27) is the same as to assert the existence of the secular motion, then we deduce 
resonant conditions. Equatioi (35) becomes: 

2	 ' / ..., yl = r - 2ain(vT, k) 
W = -k2 	 -r	 + K cos y i	 (35) 

a1 
'

/
k '	 = 7r - 2a ?n( !	 t, ' and k 

=	 ' and	

, 

for moderate inclinations. We deduce from (34) p2 k2 = k2 Km,,	 ". 

and (35')	 '	 ' ,	 '	 ' 
= a, +	 dn(vT, k)	 , 

' —Isin y	 (38)
, 

And, fiwtlly,	 in the rasc of the 'symptoLic 
dl	

= - k2 ',.	 (39) approach, 

•	 From thse two last	 uations we obtain	 '	 ' tg 

= k2 '• K sin 'y 1	 (40) -	 Yl.	 0,	 r,	 a, 

The integration of 'this 'equation is given in if T —' +	 . 
treatises on analytical dysmics, and it is not.
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1. The critical argument y	 oscillates around odda;rd	 pacc Flight Center, who suggested the 
ulvestlgaLion of tills effect and with whom the 

180°; we have the case of libration. author had several valuable discussions. 
2. 'ihe critical argument has a secular motion. 
3. The	 critical	 argument	 approaches	 zero

B.FERisNcEs	 . 
asymptotically.

.• 

Despite the fact that the libration of the critical Brown, E. W., and C. A. Shook, Planetary Theory, 
216-249,,Cambridge, 1933. 

argument may be large, the perturbations in : ilk, S., 1 ubis. A.stron. Soc. Pacific, 60, 321, 
z 1 are always small. 

In the case of libration we have Musen, P., A. .Baiiie, and B.. Bryant, Perturbations 
in perigee height of Vanguard I, Science	 131 

cos	 Yt	 . k sn (v7, k 935-936, 1960. 

= k sn (k2 s./K',. 1, k)	 (41) (Manuscript received. March 4, 1960.)
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