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Abstract. This article reports an investigation of the effect or somrramEtOWiprepsure on
the motion of an artificial satellite. The theory has been applied to the orbit of the Vanguard
I satellite, and is found to produce significant perturbations in the perigee height of that
satellite. In the case of a satellite with a large ratio of area to mass the major terms introduced
by solar radiation pressure can reduce the perigee distance at the rate of 1 to 2 km per day,
so that the lifetime of the satellite will become considerably shorter than it would be without

this effect.

Introduction. The perturbing effects of solar
radiation pressure on satellite orbits have been
generally considered by celestial mechanicians to
be negligible. However, the difference between
observed and theoretical values of perigee height
for the Vanguard I satellite have suggested a re-
examination of radiation pressure as a possible
source of the discrepancy. We have carried out an
investigation of the radiation-pressure perturba-
tion and developed an analytical theory of
resonance for the case in which the perigee
follows: the motion of the sun. It is found that
when resonance conditions are nearly satisfied
the ‘radia'tion pressure may produce substantial

. orbit perturbations over an interval of several
months. For a satellite with a large ratio of
area to mass the major terms introduced by
solar radiation pressure can reduce the perigee
distance at the rate of 1 to 2 km per day, so
that the lifetime of the satellite becomes con-
siderably shorter than it would be without this
effect. Radiation pressure is also found to produce
significant perturbations in the orbit of the
Vanguard I satellite which remove the principal
discrepancy between theory and observation in
the analysis of the Vanguard I orbit [Musen,
Bailie, and Bryant, 1960].

The terms of long period make the principal
contribution to the orbit perturbations. In the
present investigation we have therefore neglected
the effect of the carth’s shadow which has the
period of the satellite’s mean motion. The
shadow effect does not change the nature of

the perturbations, although it produces a change
in their amplitudes. We have also neglected all
other periodic terms having the mean anomaly
of the satellite in the argument.

The vectorial method is used in the develop-
ment to obtain several kinematical relations.
The equations for the scalar elements are deduced
from the equations for the vectorial elements.
All elements except the semimajor axis contain
long-period terms, but the semimajor axis is
affected by short-period variations only and is
therefore not subject to substantial perturba-
tions. '

Perturbations in the orbit plane. Let us
designate the gravitational constant by G, the
mass of the earth by M and its equatorial radius
by p. Let R be the unit vector directed along
the normal to the orbit plane, P be the unit
vector directed from the center of the earth to
perigee, and let Q = R X P. The position and
the velocity vectors of the satellite are repre-
sented by r and v, respectively; the radius vector
of the satellite will be designated by r, the true
anomaly by f, the mean anomaly by I; and the
other elliptic elements will be designated, using
the standard notations, by w, &, 1, ¢, a, n. The
mean longitude of the sun on the ecliptic will
be designated by A’, and the mean motion of the
sun will be designated by n’. Let € be the inclina-
tion of the equator to the ecliptic, i the unit
vector directed from the center of the earth
toward the vernal equinox, k the unit vector

‘normal to the earth’s equator, and let j = k X i.
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" Finally, let u be the unit vector directed from

the center of the earth toward the sun. Neglecting
the eccentricity of the earth’s orbit, we ¢an put

uw = icos\N +j COSesm)\
"+ ksinesinA (1)
The solar radiation pressure will ibeA -
F=Fd . F<O0 @)
F = constant for a spherical satellite; for the

satellite of nonspherical form we must make a cer-
_tain assumption about the average value of F and

use the average value in the deveclopment. We
shall deal with the vectorial element

g=cP @

and with the time variation of this yector with

respect to a system of coordinates rigidly con- -
- nected to the osculating orbit plane. In other

words, we shall deal with the motion of P in

this plane. For that purpose it is convenicnt

to use Hemck’s equatxon (Herrick, 1948]
GMdg/dt=T-F (4

I‘=21"v—vr—‘r?vI T (5)

r and v in this casc are given, not with respect

" to our inertial system, but with respect to a

system rigidly connected to the osculating orbit
plane; The notations rv and vr represent the

' "dyadic products; in, other words, they are the

products

_column vector-row vector

“and I is the planar idemfactor (the planar unit

matrix). Substituting ‘
= Prcosf+ Qrsinf  (6)

\/GMsmf
\/ a(l — e)

\/ (cosf + e)

7
I=PP+ QQ (8)

_into (5), and, taking

GM = né - 9
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into consideration, we deduce

+.[%('12‘+8008f ._ | .

+ 3 cos 2f) + 1 —e]PQ

— [5% (1 — cos 2f) .
+1 - e{lQP} ) (10)

In order to separate the long -periodic part in

T from the short periodic one we must develop

the coefficients of the dyadic products into.

Fourier series with respect to the mean anomaly
“and retain only the constant terms in this

development. Using Cayley’s tables, we find

_that the constant parts of the coefficients of

PQ and of QP are.¢équal to =3(1 — e?). The

"constant parts of the other coefficients are equal

to zero. Thus, we have for the long. periodic
part of T'

[T] = 32a’V1 = & (PQ — QP)
but . :

RX I=RX(PP+ QQ) = QP — PQ

and we have a simple relation
M = —nVI—¢RXIT (1)

Substituting (3) and (11) into (4) we deduce
for the long periodic part in.eP

d(eP) _ 3‘na2\/1 — ¢

s = 3 em  RXF W)

We sce that the time variation of eP is normal
to the component of F lying in the orbit plane.
The vector P in the moving system of coordinates
is affected only by the rotation about R. The
angular velocity of rotation

R dr/dl
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Thus

dP _ dmr " odr
di leXP dat

-it follows from (12) and (13)
" de

(—P+e—“Q

_E'naz\/l — ¢
2 oM
or - ,
ii_e___{_l‘ina\/l-—e.5
_ GM
dr _ _3n’Vi-¢d o
Cfar T T2 em
Substituting .

0¥

.. P = i[+ cos® (i/2) cos (w + Q)

+ sin® (i/2) cos (@ — &)]
.+ j[+cos’ (5/2) sin (w + &) -
— sir? (4/2) sin (@ — )] .

—!—ksmzsmw

(16)

into (15) and

= i[— cos’ (i/2) sin (w + &)
= sin? (/D) sin (0 — )]
F il+eos’ (i/2) cos (@ + &)
— sin’ (1,/2) cos (w — §)]
+ 'k sin 7 cos w (17)

into (14), and taking (1)-(2) into account, we
obtain '

de __3F
at- Ta2emM™
[+ cos” (i/2) sin’® (¢/2) sinfo + & + \)
+cos® (i/2). cos’ (¢/2) sin (w + & — N')
}sin’ (/2) cos® (¢/2) sin (@ — & + \)

2

1 —e

Fl—sin’ (/2) sin® (¢/2) sin (@ -8~ \)
— $sinisinesin (@ + N)
+ %sin» i 8in esin (@ — \')} (18)

(13)

RXF

a9

. (15)"

. orbit plane, considered as a rigid body,
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and

dr _ _ 3F_ o

'qt . oM™t VIT e

{4+ cos® (/2) sin® (¢/2) cos (w + & + \)
+cos® (4/2) cos® (¢/2) cos(w + & — N)
4sin’ (2/2) cos® (¢/2) cos (w — & + \) -

l .-l—sin2 (:/2) sin® (¢/2) cos (w — & — N')
— Lsinisine cos (w + )
© -+ }sin¢sine cos (@ — N)}

(19)
Perturbations in the position of the orbit planc.
The angular velocity of rotation of the osculating

’ na’ I R
= \/ 1 - 02 a GM
‘The part of r independent of [ is

(20

—32Pae’

and, consequently, ‘the long periodic . part of

le

= =T (1)

Tﬁe variation of R is caused only by the rotation -
of the osculating orbit plane, and we have then -
for the long periodic part in R -

dR/dt = —R X [{}
or
iR 3 na%QR-F -
X o g2 Rae¥R S (22
dt 2 GMV1=¢ (22

and we conclude that the long-period time
variation of R, caused by the radiation pressure,

_ consists of the rotation of R about P with the

angular velocity proportional to the cosine of the

angle between the direction to the sun and R.
This time variation is zero at the moment

when R is normal to 9, in particular when R is

- normal to the ecliptic. From equation (22) we

can also deduce the equations for 7 and §. The
angular velocity [y} can be decomposed into
the geometrical sum of (1) the angular velocity
di/dt of the rotation of the orbit plane around the
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tine of nodes and (2) the angular velocity. sin tw
d§3/dt of the rotation around the vector P sin
+ Q cos w. We have for the long-period varia-
tion in 7 and &, taking (21) into account,
Qsine) &

(P cosw —

.d8
-gint — -

+(Psinw'+Qcosw) dt

We deduce from this last cquation, after the
scalar multiplication by P cos w — Q sin w and

by P sin w + Q cos @ and taking (P cos w.—

Q sin w)-k = 0 and P-k = sin ¢ sin w into
“consideration, . .
dv 3 na cR F cosw

w” 2eavice ®

R Z93 ) 3nacR Fsinw

sin 1 —— =
Sodt 2GM\/1—e

Taking

(24)

R = isinisin§ — jsint cos§ + k cos ¢ (25)

. and (1)-(2) into consideratioﬁ, we _have after
some easy trigonometrical transformations

di*_ 3 Fnde

;ﬁ T YoM I=-@
{+sm i sin’ (¢/2) sin (@ + & + N)

— sin 7 5in’ (¢/2) sin (0 — & — X)
+ sin  cos’ (¢/2) sin (w + & — \)
— sin 7 cos’ (¢/2) sin (w — & + ')
+ cos i sin € sin (w+X)
— cOS1S5INE é’m (w— A} .
amn_ 3
at 1 (,M\/T:?
{sin 1 $in” (¢/2) cos (w + & + N)
8 — )

sin ¢

— sin 1 sin® (¢/2) cos (0 —

" —sint cos’ (¢/2) cos (w —

(26).
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+ sin ¢ cos® (¢/2) cos (w + & — \')
8+ X)

"+ cos isine cos (@ + )

(27)

These equations could also be obtained in the
standard way.

The -integration problem. If we assume that
we do not have sharp resonance conditions, the
first-order perturbations can easily be obtained
by the integration of equations (18), (19), (26),
and (27), assuming that the elements in the right-
hand sides are replaced by their mean values. The -
oblateness of the earth produces the secular
motions of the node and of the argument of the
perigee, for which we have

Gk}p%z(l - gsi_n2 i) '

— cos % sin € cos (@ —-N')}

= W B L - t
w 0. + a2(1 - c~)2 ( 0)
3k,o'n cos t,
= - e — ¢
Q=8 T T )z o)
The resonance case. The resonance 'i cdsel

deserves special attention and a special treat-
ment. The most interesting resonance occurs
when the perigee of the satellite closely follows’
the sun, i.e., when the critical argument, in the
terminology of celestial mechanics, is

w48 =N

The term with this argument is the most in-
fluential one in the development of the radiation
perturbations in the case of Vanguard I.

In order to simplify the exposition we shall
adopt the system of units in usc at the Vanguard
Computer Center in the computation of the
gencral oblateness per turbations. We put

G=1 M=1 p =1

and we use the systcm -of ecoordinates rotating
uniformly in the equatorial plane with angular
velocity equal to the mean motion of the sun in
the ecliptic. 1n our exposition we follow the
line of thought laid down by Brown in his
planctary theory {Brown and Shook, 1933}, .
modifying the form of the disturbing function -
to serve our purpose, and, as Brown did in the
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planetary case, we will reduce our problem to
an equation similar in form to the equation of
the motion of a mathematical pendulum. The
modified canonical set of Poincaré

5= Vel - VI=¢)

po=—w—+N
m=Va wm=lte+t@-—N (29
T, = m;(l— cos 1)

-8+ N

is especially convenient here. The corresponding
Hamiltonian function consists of several parts: .

1 The part

Z)3=

1
_ 2a
. is contributed by the elliptic motion of the
- satellite. ' .
2. The part

RV, a(l — ¢°).cost
is generated by the motion of the sun.

3. The secular.part
k(1 = § sin® 1)
a’(1 — e)**

s produced by the oblateness of the earth.

4. The periodic part
—32 Fae cos” (i/2) cos’(¢/2)
. o -cos {w +8 -2
comes from the dcvelopfnent of the disturbing
potential —F-r into a trigonometric series.

Thus, we have
1

H=—2—a+n’\/;z_(l — ¢) cost

k(1 — § sin® 4)
as(l — e2)3/2
-cos® (¢/2) cos (w + & — N)
or, taking (28) into consideration,

1
23522 .

+ — 2Fae cos’ (/2)

(29)

-+ n’(xz - n — 13)

4

LR
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_E.‘,_[ 1 : 3z,
+ 7 L — 3)° (2 — 2’
+ ___Bm 30’ -] + kK co'; 1 (30)
M -y ] T
where we put
k,K = —3Fac cos’ (i/2) cos’ (/2) > 0
We have
 dw _ J0H  dy _ _9H
dt 9 dt =z, (31)

The arguments y. and ys are not present in (30),
and from .

dx:‘__ 3_[_1__0

dt | dys

duy _ L OH
dt -+6y2 =0

it follows that

>

Ty =0 = 'constant
r; = az = constant
and we also havé the iﬁtegml of Jacobi
| o =h

1f the satellite is approximately of the size and
the form of Vanguard I, thie perturbations in
the eccentricity are small, even if the resonance is
a sharp one. The ratio F/k, in this case is also

- small, and the coefficient K might be considered

to be invariable. Let us introduge.a new variable
£ instead of 1, and a new independent variable
T instead of ¢, by putting

Cm=a+ Vit (32)
V', dt = dT (33)

where @, is a constant to be determined.
Equations 31, if transformed -to the new
variables, becomes

dE _ L 8W  dn _ W

ar = ey, AT 0 (39

where

S (k . _ )

b o, o '
+ hyo s+ Keosy,  (39)
dory .
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" . treatises on analytical dynamics, and it is not.

FoadA - EIL

Toand o :
R o v 3a;
“_'. ¢ — a[ - '(012 - Ch)4

(az - Cll)

.. 3.0!32' ]

: 6

2(“ — a,)b (3 ))

Let us det.el mine lhc cnnstxmt. a, in such a way
that. the condltlon

. k 9 _

= 6oz|

Lt

.. is satisfied. This last equation says that in the
first approximation' the argument y does not

have a secular motion. In other wofds, to assert
- (27) is the same as to assert the existence of the .
resommt conditions. Equatlon (35) becomes

e W—' 6 25 +Kcosyl
: : (+ 3 .
“. and , -
' " __9_9.
. ax? £ > 0

-‘ for moderate mchmtxom We deduce from (34)
and (35")

. : d ;o
K . C E’f_’ = — K sin y, (38)
Coe U
o ar = 2 AR (39)
" . From these two last e%uat}ions we obtain
’ ‘ g2 , :
.%‘5 = kopt,» K sinyy (40)

The integrzition of ‘this equation is given in
necessary to reproduce-it here. The following
"three cases exisb .

1. The critical argument y: oscillates around
180°; we have the case of libration.

2. The critical argument has a secular motion.

3. The critical argument approaches zero
asymptotically.

Despite the fact that the libration of the critical
argument may be large, the perturbations in
z, are always small.

. In the case of libration we have

cos 3y, = ksn (v7 k)
= ko (b V Kl n 1, K)

3
o

(41)
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wheré
= kK" s (12)

and 0 < k < 1 is the constant of integration.
We deduce

an y
T (43)

and, taking (32), (33), (42), and (43) into con-
‘sideration, we obtain

T =a + 2kq‘¢,, en(vT, k)

If the motion of ¥ is progressive, i.e.,
-secular motion, then we deduce

= — 2kv cn(vT, k)

if i has

(35’)"" po=T 2.a‘:m.(uT, k)

=7 — 2am(lckz vV Kd;f,"_. ¢, k)

and
'vzkz = k,Kda,.'' -
| ?;, = q ] »\ dn(v’! k)
And, finally, in the casc of the :Lsympt'étic ‘
approach, : -
s tg ’2 = CC—'T‘ Vo= kK¢l
p ?/L——)O) S"')O) xlé)all
HT—+ .
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