Possible Space-Based Gravitational-Wave Observatory Mission Concept

Abstract Body: The existence of gravitational waves was established by the discovery of the Binary Pulsar PSR 1913+16 by Hulse and Taylor in 1974, for which they were awarded the 1983 Nobel Prize. However, it is the exploitation of these gravitational waves for the extraction of the astrophysical parameters of the sources that will open the first new astronomical window since the development of gamma ray telescopes in the 1970’s and enable a new era of discovery and understanding of the Universe. Direct detection is expected in at least two frequency bands from the ground before the end of the decade with Advanced LIGO and Pulsar Timing Arrays. However, many of the most exciting sources will be continuously observable in the band from 0.1-100 mHz, accessible only from space due to seismic noise and gravity gradients in that band that disturb ground-based observatories. This talk will discuss a possible mission concept developed from the original Laser Interferometer Space Antenna (LISA) reference mission but updated to reduce risk and cost.

AUTHORS (FIRST NAME, LAST NAME): Jeffrey C. Livas

Possible Space-Based Gravitational Wave Observatory Mission Concept

Minimum Cost 3-arm/6-link LISA-like Mission

Jeff Livas
NASA Goddard Space Flight Center
August 12, 2015
Outline

• Current US activity
• Rough Development Timeline
• Range of Mission Designs
 – Original NGO as proposed
 – SGO-Mid proposed alternative
 – LISA baseline
• Summary
Current US Activity

- Plan of record is a minority partnership for L3
- Monitoring ongoing ESA L3 planning activity: Gravitational-wave Observatory Advisory Team (GOAT)
 - Evaluate technology readiness/concepts for L3
 - Atom interferometry ruled out as not ready
 - Evaluate the success of the LISA Pathfinder mission
- LISA Pathfinder participation (Nov 2015 launch)
- Technology Development and Decadal Survey Preparation
- Many details of a US role remain undefined at this stage
 - Financial contribution
 - Specific technologies
One possible timeline...

<table>
<thead>
<tr>
<th>Year</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>L3 Formulation Phase</td>
</tr>
<tr>
<td>2016</td>
<td>EM Development</td>
</tr>
<tr>
<td>2017</td>
<td>SPC L3 Adoption</td>
</tr>
<tr>
<td>2018</td>
<td>L3 Implementation Phase</td>
</tr>
<tr>
<td>2019</td>
<td>L3 Launch Mid 2034</td>
</tr>
<tr>
<td>2028</td>
<td>L2 Launch Mid 2028</td>
</tr>
<tr>
<td>2029</td>
<td>JWST Launch</td>
</tr>
</tbody>
</table>

ESA Activity
- LISA Pathfinder launch
- L3 Call and selection

NASA Activity
- US L3 Technology Development
- Mid-Decadal Review
- JWST Launch
- US 2020 Decadal Survey
- WFIRST/AFTA

Other Activity
- LIGO O1, O2, O3
- VIRGO
- iKAGRA
- bKAGRA
- NANOGrav* Science Frontier Center
- Operations + upgrades
- LIGO-India (planned)
- 9-year Data Release
- EPTA + PPTA = IPTA

See poster #31 J. Lazio for more information
Range of Mission Concepts

NGO¹ (L1 Proposal)

Two-arm version design

SGO² Mid

Minimum-cost three arm design with acceptable Decadal-survey science return.

LISA/SGO High

LISA concept with single-agency costing and all known cost reductions.

¹New GW Observatory
²Space-based GW Obs
Architecture Trades

• Trades that do affect the science performance
 – Two arms (NGO)
 – Measurement arm length (SGO Mid)
 – Duration of science operation*
 – Orbit: drift-away, or not
 – Telescope diameter
 – Laser power

• Trades that don’t affect the science performance
 – In-field guiding/backlink fiber
 – Single optical bench
 – Single proof mass
 – Spherical proof mass
Mission Concept Comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NGO</th>
<th>SGO Mid</th>
<th>LISA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement arm length</td>
<td>1×10^6 km</td>
<td>1×10^6 km</td>
<td>5×10^8 km</td>
</tr>
<tr>
<td>Number & type of spacecraft</td>
<td>1 corner (2 optical assemblies, 2 end (single optical assembly)</td>
<td>3 corner (2 optical assemblies)</td>
<td>3 corner (2 optical assemblies)</td>
</tr>
<tr>
<td>Number of measurement arms, one-way links</td>
<td>2 arms, 4 links</td>
<td>3 arms, 6 links</td>
<td>3 arms, 6 links</td>
</tr>
<tr>
<td>Constellation</td>
<td>Vee</td>
<td>Triangle</td>
<td>Triangle</td>
</tr>
<tr>
<td>Gravitational-wave polarization measurement</td>
<td>Single instantaneous polarization, second polarization by orbital evolution</td>
<td>Two simultaneous polarizations continuously</td>
<td>Two simultaneous polarizations continuously</td>
</tr>
<tr>
<td>Orbit</td>
<td>Heliocentric, earth-trailing, drifting-away 9° - 21°</td>
<td>Heliocentric, earth-trailing, drifting-away 9° - 21°</td>
<td>22° heliocentric, earth-trailing</td>
</tr>
<tr>
<td>Trajectory</td>
<td>Launch to Geosynchronous Transfer Orbit, transfer to escape, 14 months</td>
<td>Direct injection to escape, 18 months</td>
<td>Direct injection to escape, 14 months</td>
</tr>
<tr>
<td>Duration of science observations</td>
<td>2 years</td>
<td>2 years</td>
<td>5 years</td>
</tr>
<tr>
<td>Launch vehicle</td>
<td>Two Soyuz-Fregat</td>
<td>Single Medium EELV (e.g., Falcon 9 Block 3)</td>
<td>Single Medium EELV (e.g., Atlas V 551)</td>
</tr>
<tr>
<td>Optical bench</td>
<td>Low-CTE material, hydroxy-catalysis construction</td>
<td>Low-CTE material, hydroxy-catalysis construction</td>
<td>Low-CTE material, hydroxy-catalysis construction</td>
</tr>
<tr>
<td>Laser</td>
<td>2 W, 1064 nm, frequency and power stabilized</td>
<td>1 W, 1064 nm, frequency and power stabilized</td>
<td>2 W, 1064 nm, frequency and power stabilized</td>
</tr>
<tr>
<td>Telescope</td>
<td>20 cm diameter, off-axis</td>
<td>25 cm diameter, on-axis</td>
<td>40 cm diameter, on-axis</td>
</tr>
<tr>
<td>Gravitational Reference Sensor</td>
<td>46 mm cube Au:Pt, electrostatically controlled, optical readout</td>
<td>46 mm cube Au:Pt, electrostatically controlled, optical readout</td>
<td>46 mm cube Au:Pt, electrostatically controlled, optical readout</td>
</tr>
</tbody>
</table>
Science Comparison

(Working observatory doing precision parameter estimation: not just detection.)

<table>
<thead>
<tr>
<th></th>
<th>NGO</th>
<th>SGO Mid</th>
<th>LISA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massive Black Hole Binary Totals</td>
<td>40-47</td>
<td>41-52</td>
<td>108-220</td>
</tr>
<tr>
<td>Detected $z > 10$</td>
<td>1-3</td>
<td>1-4</td>
<td>3-57</td>
</tr>
<tr>
<td>Both mass errors < 1%</td>
<td>13-30</td>
<td>18-42</td>
<td>67-171</td>
</tr>
<tr>
<td>One spin error < 1%</td>
<td>3-10</td>
<td>11-27</td>
<td>49-130</td>
</tr>
<tr>
<td>Both spin errors < 1%</td>
<td><1</td>
<td><1</td>
<td>1-17</td>
</tr>
<tr>
<td>Distance error < 3%</td>
<td>3-5</td>
<td>12-22</td>
<td>81-108</td>
</tr>
<tr>
<td>Sky location < 1 deg2</td>
<td>1-3</td>
<td>14-21</td>
<td>71-112</td>
</tr>
<tr>
<td>Sky location < 0.1 deg2</td>
<td><1</td>
<td>4-8</td>
<td>22-51</td>
</tr>
<tr>
<td>Extreme Mass-Ratio Inspirals</td>
<td>12</td>
<td>35</td>
<td>800</td>
</tr>
<tr>
<td>Resolved Compact WD Binaries</td>
<td>3,889</td>
<td>7,000</td>
<td>40,000</td>
</tr>
<tr>
<td>Interacting</td>
<td>50</td>
<td>100</td>
<td>1,300</td>
</tr>
<tr>
<td>Detached</td>
<td>5,000</td>
<td>8,000</td>
<td>40,000</td>
</tr>
<tr>
<td>Sky location < 1 deg2</td>
<td>1,053</td>
<td>2,000</td>
<td>13,000</td>
</tr>
<tr>
<td>Sky location < 1 deg2, distance error < 10%</td>
<td>533</td>
<td>800</td>
<td>8,000</td>
</tr>
<tr>
<td>Stochastic Background (normalized)</td>
<td>0</td>
<td>0.2</td>
<td>1</td>
</tr>
</tbody>
</table>

Special acknowledgement to Ryan Lang (Univ. of Florida) and Neil Cornish (Montana State Univ.)
NGO Mission Summary

- Mission Design
 - 10^6 km arm-length, 2 arms, 60 deg “V”
 - Mother + 2 x daughter S/C configuration
 - LISA-like payload
 - 20 cm telescope/2W laser
 - 10-degree drift away heliocentric orbit
 - Launch to sub-GTO, separate from LV
 - Two Soyuz-FRG or
 - shared Ariane V
 - Baseline 2 year lifetime + 2 years
 - Limited by communications bandwidth
SGO-Mid Mission Summary

- **Mission Design**
 - 10^6 km arm-length, 3 arms, 60 deg triangle
 - 3 identical spacecraft
 - LISA-like payload
 - 25 cm telescope/1 W laser
 - 9-21 degree drift away heliocentric orbit
 - Direct injection to escape, 18 mo transfer
 - Single EELV (e.g. Falcon 9 Block 3)
 - Baseline 2 year lifetime + 2 years
 - Limited by communications bandwidth

“Sciencecraft”

SGO Layout

Single EELV Launch Stack

\[
S_x = \frac{\sqrt{3}}{2} X \\
S_y = \frac{1}{2} (X + 2Y) \\
S_z = \frac{1}{3} (X + Y + Z)
\]
Payload Integrated with Bus

Payload systems
- Interferometer Measurement System (IMS)
 - Laser
 - Telescope
 - Optical bench
- Disturbance Reduction System (DRS)
 - Gravitational Reference Sensor (GRS)
 - µN thrusters
 - Control laws

Full Spacecraft Bus

(Note: solar array not shown)

DRS Detail

colloidal µN thrusters

IMS Detail

Main Telescope (25cm dia.)

Gravitational Reference Sensor

Optical Bench

Telescope Assembly

IAU Meeting Hawaiʻi Aug 2015

No ITAR or EAR protected information
Prop Module/Cruise Configuration

Propulsion Module:
- Bi-prop design
- $\Delta v \sim 200 \text{ m/sec}$ capability
- 6 coarse sun sensors
- 2 star tracker heads
- 2 omni antennas
Mission Timeline

Falcon Heavy EELV

Cruise Trajectories

Science Orbits

Stack in Falcon 5 m PLF

Acquisition

Doppler/Arm length changes

Mission Timeline

18 month cruise

24 months science operations: orbits optimized for 48 months

Science Operations

Pre-Launch
Considerations for a Mission

• Need one that does the science, and gets selected

• To get “adopted” by ESA
 – Fit within the available cost cap
 – Allows assignment of responsibilities, including US
 – Recognizes European investments (LPF)

• To get “started” by NASA
 – Acceptable and affordable role for NASA
 – Suitable endorsement by 2020 decadal review
 – Acceptable to the “stakeholders” (e.g. ESA, NASA, member states)
Costs

• Estimate of contributions that could be available for L3
 – ESA cap is 1B€, ~$1.2B
 – Member states contribution is ~250-300M€, ~$360M
 – 20% NASA contribution is $316M
 – Total: $1.9B

• Cost estimates from 2012 Study
 – SGO Mid: $1.4B (study team), $1.9B (Team X)
 – LISA: $1.7B (study team), $2.1B (Team X)

• A NASA contribution of $500M would cover all options.
Summary

• Space-based gravitational-wave work continues
 – Spectacular science receives top ratings in reviews
 – Science return can be calculated from the design
 – Issue is funding, not technology

• Current opportunity is partnership with ESA on an L3 mission for 2034 launch
 – 20+ year scientific collaboration on both sides of the Atlantic
 – Requires successful LISA Pathfinder technology demo on track for a Nov 2015 launch
 – NASA role remains to be well defined

• US technology development targeted at TRL-5/6 level for ~ 2019 for key technologies
 – Includes hardware, astrophysics, and data analysis work

• Full LISA design returns best science for cost, risk
 – SGO-Mid carried as a de-scope
Backup Slides
How the science instrumentation works

• The Constellation is the instrument
 – Orbits passively maintain formation
 – “Sciencecraft” house test masses and interferometry

• Interferometer Measurement System (IMS)
 – Active transponder, phase-locked laser ranging system
 – Phasemeter records fringe signal
 – Laser frequency noise correction by pre-stabilization and post processing

• Disturbance Reduction System (DRS)
 – Free-falling test masses don’t contact the sciencecraft
 – Drag-free stationkeeping reduces sciencecraft test mass relative motion and force gradients
 – Design to limit thermal, magnetic, electrostatic, mechanical, self-gravity disturbances
Frequency Noise Suppression: Time Delay Interferometry (TDI)

• An interferometer arm length mismatch ΔL will allow frequency noise to mimic a displacement noise, δx.

• A sensitivity requirement of $\delta x < 10 \text{ pm}/\sqrt{\text{Hz}}$ implies that the interferometer arm lengths must be equal to better than 100 m.

• LISA arm lengths may differ by as much as 1% or 10,000 km!

\[\delta x = \frac{\delta \nu}{\nu} \Delta L \]

1. Unequal-arm Michelson interferometer
 - Output corrupted by laser frequency noise

2. Equal-arm (Sagnac) interferometer (TDI combination X)
 - Output immune to laser frequency noise: synthesized equal arms

3. Constant spacecraft velocity introduces an arm length mismatch to the synthesized interferometer.
 - $\Delta L \sim 20 \text{m/s} \times 6.7 \text{ s} \sim 130 \text{ m}$
 - Output immune to laser frequency noise: synthesized equal arms

Instrument Performance

- The instrument performance is determined by:
 - Displacement noise from the Interferometric Measurement System (IMS)
 - Acceleration noise from the Disturbance Reduction System (DRS)
 - Arm Length (1×10^6 km)
- The arm length also determines the instrument response function and is optimized for the science requirements.

LISA Pathfinder to validate noise model

<table>
<thead>
<tr>
<th>Summary of IMS subsystem noise allocations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect</td>
</tr>
<tr>
<td>Total IMS Error/Noise Budget</td>
</tr>
<tr>
<td>Total of subsystem allocations</td>
</tr>
<tr>
<td>Subsystem Allocations</td>
</tr>
<tr>
<td>Shot noise</td>
</tr>
<tr>
<td>Pathlength noise</td>
</tr>
<tr>
<td>Measurement noise</td>
</tr>
<tr>
<td>Pointing Errors</td>
</tr>
<tr>
<td>Telescope pathlength stability</td>
</tr>
<tr>
<td>Optical bench pathlength stability</td>
</tr>
<tr>
<td>Photoreceiver errors</td>
</tr>
<tr>
<td>Residual laser frequency noise</td>
</tr>
<tr>
<td>Residual clock frequency noise</td>
</tr>
<tr>
<td>Phasemeter noise</td>
</tr>
<tr>
<td>Intensity noise</td>
</tr>
<tr>
<td>Phase reconstruction</td>
</tr>
<tr>
<td>straylight</td>
</tr>
</tbody>
</table>
Orbits/trajectory

- **2 year drift-away**
 - ~6 deg/year drift rate starting at 9 degrees
 - 2 year end of mission similar to nominal SGO-high orbital station (but orbit optimized for 4 years)
 - EOL communications requirements similar to SGO-high

- **Stable constellation geometry simplifies measurement**
 - $\Delta L/L \sim 0.010$, relative to 10^6 km
 - $\Delta \alpha \sim +/- 0.6^\circ$ relative to 60°
 - $\Delta v \sim +/- 1.6$ m/s
 - Point ahead $\sim +/- 0.55$urad out of plane
 - Point ahead $\sim +/- 0.004$ urad in plane, relative to ~ -0.3 urad

- **18 month trajectory from escape**
 - For shared launch, second stage has 2 restarts
 - Drop off shared package at GTO, then go to escape
 - Optimized $\Delta V \sim 130$ m/s (each), ~ 200 m/s for extended launch window and margin
Operations / Science Data

• Simple Operations
 – No instrument pointing or scheduling of observation time
 – LISA observes “all the sky, all the time”
 o Scheduled interruptions approximately every 2 weeks for HGA re-pointing and to switch laser offset frequencies

• Routine Communications Strategy
 – Ka-Band downlink every 2 days with one spacecraft (6 days for the constellation)
 – Up to 8-hr contacts with DSN 34m at 90 kbps (allows downlink of 6 days telemetry generated at 5 kbps)
 – Special merger events may require more frequent contact and continuous operation for up to ~ 4 days to preempt schedule interruptions and com

• Science Data
 – 5 kbps = 1 kbps science data + 4 kbps science housekeeping and engineering data, 15 kbps total for the constellation
 – No on-board science processing
 – Mission Ops Team forwards downlinked data to Science Data Centers
Why is this important?

The Gravitational Wave Spectrum

Sources

Many sources we care about
ESA L3 2034 launch (ground detection + 16 yrs!)

Compact Binaries in our Galaxy & beyond

Compact objects captured by Supermassive Black Holes

Binary Supermassive Black Holes in galactic nuclei

Quantum fluctuations in early universe

Wave period

age of universe

years

hours

sec

ms

log(frequency)

-16

-14

-12

-10

-8

-6

-4

-2

0

+2

Detectors

Cosmic microwave background polarization

Pulsar Timing

Space Interferometers

Terrestrial interferometers

CMB Polarization

Detection 2018?

Detection 2017-18?
Science Overview

Science Overview

- **Supermassive Black Hole Mergers**
 - Formation and growth of massive black holes: galaxy mergers
 - Dynamical strong-field gravity
 - Merger rates of $10s - 100s \text{ yr}^{-1}$ expected

- **Galactic close compact binaries**
 - Population of galactic ultra-compact binaries
 - Evolution of ultra-compact binaries
 - $>10^4$ sources expected

- **Extreme Mass Ratio Inspirals (EMRIs)**
 - Cosmological gravitational wave background
 - Superstring bursts

- **New Physics / Unexpected Sources**
 - Precision tests of GR in strong-field regime
 - Event rates uncertain

Gravitational Wave Mission Concept Development Team

Study Manager: Ken Anderson, NASA/GSFC
Study Scientist: Tuck Stebbins, NASA/GSFC

Science Task Force

Neil Cornish, Montana State University (Chair)
John Baker, NASA/GSFC
Matthew Benacquista, University of Texas Brownsville
Emanuele Berti, University of Mississippi
Curt Cutler, NASA/JPL
Ron Hellings, Montana State University
Ryan Lang, Washington University
Shane Larson, Utah State University
Tyson Littenberg, NASA GSFC
Jeffrey Livas, NASA/GSFC
Sean McWilliams, Princeton University
James Ira Thorpe, NASA/GSFC
Michele Vallisneri, NASA/JPL

Community Science Team

Rainer Weiss, MIT (Co-chair)
Edward Wright, UCLA (Co-chair)
Peter Bender, University of Colorado
Joan Centrella, NASA/GSFC
Neil Cornish, Montana State University
Jens Gundlach, University of Washington
Ronald Hellings, Montana State University
Guido Mueller, University of Florida
Holger Mueller, U. C. Berkeley
Thomas Prince, Caltech

Core Team

Petar Arsenovic, NASA/GSFC
John Baker, NASA/GSFC
Peter Bender, University of Colorado
Edward Brinker, NASA/GSFC
Jordan Camp, NASA/GSFC
John Crow, NASA/GSFC
Curt Cutler, NASA/JPL
Glenn deVine, NASA/JPL
Robert Gallagher, NASA/GSFC
William Klipstein, NASA/JPL
Steve Leete, NASA/GSFC
Jeff Livas, NASA/GSFC

Kirk McKenzie, NASA/JPL
Guido Mueller, University of Florida
Juergen Mueller, NASA/JPL
Kyle Norman, NASA/GSFC
Kenji Numata, NASA/GSFC
Babak Saif, NASA/GSFC
Robert Spero, NASA/JPL
James Ira Thorpe, NASA/GSFC
Michele Vallisneri, NASA/JPL
Brent Ware, NASA/JPL
Gary Welter, NASA/GSFC
John Ziemer, NASA/JPL

IAU Meeting Hawai’i Aug 2015
No ITAR or EAR protected information
What happened to LISA?

• Summary of the timeline:
 – March 2011: ESA ended the partnership to pursue a joint gravitational wave mission
 – NASA pursued multiple alternate options including
 o Minority role in the ESA-led mission (~ 2022 selection for 2034 launch)
 o A NASA-led mission based on a down-scaled concept
 o A joint mission at some future date (after 2020)
 o Concept is Space-based Gravitational-wave Observatory (SGO-Mid)

• Nov 2013: Selection of L2/L3 science themes:
 – L2 is the “Hot and Energetic Universe” for an expected 2028 launch
 – L3 is the “Gravitational Universe” for an expected 2034 launch

• June 2014: selection of Athena as the mission for L2

• Selection of an L3 Mission Concept in 2016 (moved up from 2022)?
 – NGO is the ESA name for the original proposed mission
 – Evolved LISA (eLISA) is the leading mission contender
 – US would contribute technology as a minority partner

• Technologies under development:
 – Phasemeter -- Micro-Newton thruster -- optical bench
 – Laser -- Telescope -- photoreceiver