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The goal of this study was to advance understanding and prediction of the impact of circadian rhythm on 

aspects of complex task performance during unexpected automation failures, and subsequent fault 

management. Participants trained on two tasks: a process control simulation, featuring automated support; 

and a multi-tasking platform. Participants then completed one task in a very early morning (circadian night) 

session, and the other during a late afternoon (circadian day) session. Small effects of time of day were 

seen on simple components of task performance, but impacts on more demanding components, such as 

those that occur following an automation failure, were muted relative to previous studies where circadian 

rhythm was compounded with sleep deprivation and fatigue. Circadian low participants engaged in 

compensatory strategies, rather than passively monitoring the automation. The findings and implications 

are discussed in the context of a model that includes the effects of sleep and fatigue factors. 

 

INTRODUCTION 

 

With an ever-increasing proliferation of systems 

featuring automation, understanding and predicting operator 

performance when automation unexpectedly fails has naturally 

become a critical issue. Developing a detailed understanding is 

of value to domains in which errors can have catastrophic 

consequences, wherein an individual may need to operate with 

little or no support, and where a range of factors may degrade 

the expected level of human performance. The CODDMAN 

(Complacency, Detection, Diagnosis, and Fault Management) 

model represents an attempt to predict how a variety of factors 

affect the performance of an operator during a sudden 

workload transition, of the type associated with an unexpected 

failure of an automated system within these environments. Our 

interest is particularly in the environment of the astronaut on 

long duration space missions (Sebok, Wickens, Clegg, & 

Sargent, 2014), however the same factors will be relevant for a 

variety of scenarios featuring automation failures.  

To account for the effect of sleep disruption on the 

complex and multi-tasking performance required for 

unexpected failure management within the model, an initial 

review and meta-analysis on sleep disruption effects on 

complex task performance (Wickens, Hutchins, Laux, & 

Sebok, 2015) was conducted. Relevant to the current research, 

two important findings emerged: (1), sleep-fatigue-induced 

decrements on complex cognitive and multi-task performance 

were considerably less severe than those reported from 

simpler tasks which involved reaction time and vigilance. In 

addition (2), circadian night created a threefold magnification 

of performance decrements associated with sleep deprivation, 

compared to circadian day. 

Incorporating such factors into the CODDMAN 

model enables predictions about the effects of fatigue and 

sleep disruption on each stage of automation fault 

management (see Sebok et al., 2015, this symposium). Single 

task monitoring and vigilance component tasks preceding the 

unexpected failure are likely to be more effected by sleep 

deprivation than the more complex components of the 

diagnosis and fault management phases of CODDMAN (see 

Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Fatigue and Sleep factors from the 

CODDMAN model of operator performance. Minus signs 

indicate factors associated with impoverished performance, 

with double signs showing greater magnitude effects. 

 

Reacting appropriately to the onset of a fault depends 

on prior monitoring and developing an understanding of the 

system state. Comprehension of the nature of the evidence 

available is a vital component of fault detection that might be 

masked by failing to notice that an event has occurred. As 

described below, this observation led us to operationalize 

monitoring and detection in a different fashion than is typical 

elsewhere in the literature on fatigue effects. One specific 

aspect was the inclusion in our experiments of a salient master 

alarm, which always alerted participants to the onset of a fault, 

thus eliminating fatigue effects associated with a simple 

failure of visual search.  

One set of predictions about variations in 

performance from circadian rhythm effects comes from a 

study by Manzey and colleagues (Manzey, Reichenbach, & 

Onnasch, 2009) who observed that fatigued operators tended 

to compensate for sleep-related fatigue through increased 

sampling of information. A tendency to shift from passive 

supervisory observation of automation, to more active and 
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engaged behavior, would be consistent with a compensatory 

reaction against the taxing demands found in monitoring an 

automatic system (Warm, Parasuraman, & Matthews, 2008). 

Thus, an adaptive reaction to the high demands of passive 

visual monitoring might be to transform the activity as an 

operator to more active inspection of the system state. 

 

Time of day effects within two complex tasks 

The current experiment employed two different types 

of tasks to examine fatigue effects on simple versus complex 

aspects of task performance. A supervisory process control 

task included operations from all 4 stages of the CODDMAN 

model; and a multi-tasking platform included one specific 

routine monitoring element amid higher demand tasks, which 

also included switching between tasks. These multi-tasking 

requirements are an important domain for the model because it 

is prototypical of the kinds of demands placed on operators in 

failure management. 

In the supervisory process control task AutoCAMS 

(Manzey et al., 2008), which is designed to simulate 

environmental control in space, operators attempt to keep 

Oxygen and Nitrogen levels within a safe range. Further, 

operators must identify, diagnose, and repair failures as they 

occur during times when reliable automated assistance is 

available (Routine Failure), when automated assistance is 

available but incorrect (First Failure of Automation), and 

when automated assistance is not available (Second Failure of 

Automation).  

For assessing multitasking performance, we used 

MATB (Multi Attribute Task Battery) II (Santiago-Espada, 

Myer, Latorella, & Comstock, 2011). This is a multi-tasking 

research platform that requires individuals to oversee four 

concurrent subtasks (tracking, monitoring, resource 

management, and communications). All of the subtasks were 

presented visually on a screen in four quadrants so that each 

task was visible at all times, except for the information used in 

the communications task. The communications task required 

participants to listen to a simulated air traffic control message 

and respond to specific messages if they were directed at the 

participant’s identification number. Participants were, by a 

single-handed control, able to perform only a single subtask at 

a time. 

The goal of the current study was to identify the 

effect of time of day (circadian day versus night) on 

CODDMAN components. Consistent with the review above, 

three major questions were addressed: 

1) Are the effects of sleep related-fatigue on multi-

tasking and complex diagnosis less than those observed on 

vigilance or monitoring? 

2) Are the same active-engagement compensatory 

effects of circadian-induced fatigue found by Manzey et al. 

(2009) observed without the sleep loss component?  

3) Within AutoCAMS, if effects due to visual 

scanning components are mitigated through the use of a 

master alarm, do time-of-day effects still occur?  

 

 

 

 

METHODS 

 

Participants 

 

 Fifty-six participants signed up for three separate 

sessions, and received $45 compensation for their attendance. 

Of those, 50 attended an AutoCAMS session of the 

experiment but 1 participant failed to understand the task 

leaving 49 participants for that task, and 47 students 

completed the MATB portion.  

 

Materials & Procedure 

  

Participants were trained midday (between 10 am – 2 

pm) on both AutoCAMS 2.0 and MATB II. Training sessions 

were designed to last 90 minutes, where 30 minutes was 

allocated to learn MATB and 60 minutes allocated to learn 

AutoCAMS 2.0. Training on the supervisory process control 

task (AutoCAMS) consisted of a self-paced multimedia 

presentation in PowerPoint. Participants were introduced to 

the simulation of the life-support system, where they had to 

maintain Oxygen and Nitrogen within normal range to ensure 

safe conditions for a crew of astronauts. Once a failure was 

introduced into the system, which caused levels to go out of 

target range, operators had to detect, diagnose, repair, and 

manually manage the system to return levels to normal. 

AutoCAMS training took approximately 30-40 minutes to 

complete. After training, participants completed a 5 minute 

practice block in AutoCAMS where an automated decision 

aid, AFIRA, correctly identified a failure and provided steps to 

take to manage the failure. One routine failure occurred during 

the practice block. Once the practice block ended, participants 

were able to ask questions to clear up any misunderstanding. 

MATB training consisted of a series of slides in PowerPoint 

that was adapted from Santiago et al. (2011). MATB training 

was self-paced, and took approximately 15 minutes to 

complete plus a brief two-minute practice trial in which all 

four tasks presented task events. Similarly, participants were 

able to ask questions about the task during this period.  

 To induce circadian effects without sleep deprivation 

(i.e., time of day effects without requiring participants to 

remain awake into the night), test phase sessions were 

conducted at either 5am (“circadian low”, and still part of the 

circadian night phase identified by Wickens et al., 2015), or at 

5pm (“circadian high”, and still part of the circadian day 

phase). 

Participants were therefore required to come back 2-3 

days after their training session for either a 5am session or a 

5pm session (retention delay between training and test phases 

varied between 29 and 67 hours; M= 51.8 hours, SD= 11.7). 

Those who had a 5am session first returned that same day for 

a 5pm session. Those whose first experimental session was at 

5pm came back the following day at 5am for a second session. 

The order of sessions, and the task performed in them 

(AutoCAMS or MATB) was counter-balanced.  

 

AutoCAMS. A 2 (Time of day: circadian low vs. circadian 

high) X 3 (Failure type: Automation support with a decision 

aid (“Auto”), “First Failure” (FF) of automated support, 



“Second failure” (2F)) MANOVA was used with fatigue 

condition as a between subjects variable, and failure type as a 

within subjects variable. Consistent with the method from 

Wickens, Clegg, Vieane, and Sebok (2015) participants 

completed four blocks of trials, each featuring system faults 

but with different levels of automation aid. All participants 

were provided with a master alarm in all blocks to alert the 

onset of failures, assisting with the detection portion of the 

task. Within the first two blocks, routine failures were coupled 

with correct AFIRA diagnosis and management guidance. In 

block 3, the automated assistance failed (FF) by providing 

incorrect information (a wrong diagnosis and incorrect 

management steps). Block 3 lasted 15 minutes, with the fault 

(and associated automated aid failure) introduced 10 minutes 

into the block. In block 4, a fault again occurred, but the 

automated assistance was made unexpectedly unavailable for 

participants, leaving them to diagnose, repair, and manually 

control the system on their own. In block 4 the failure (2F) 

occurred 1 minute into the 5 minute block.  

 When a failure occurred, as indicated by the master 

alarm changing from green to red, participants were expected 

to diagnose the failure, initiate a repair order, and then 

manually manage the failing system to return levels to within 

their target range. In training, participants were informed that 

the automation could potentially fail, and of the importance of 

verifying the diagnosis provided by the automation. The 

automated assistance provided both the diagnosis of the failure 

(e.g., “Oxygen valve leak”) and steps to manage that failure 

(e.g., “Turn Oxygen flow to high”). When automated 

assistance was absent (the 2F event), participants had to rely 

on their own abilities to diagnose, repair, and manage the 

failure. Monitoring, detection, diagnosis, and management 

performance was collected for all experimental trials.  

 

MATB. In the MATB task, participants completed three test 

trials each ten minutes in length, comprising an easy, difficult, 

and mixed tracking difficulty condition (the entire procedure 

duplicated Gutzwiller et al., 2014).  

The tracking task was present for the entire duration 

of all trials. Trials consisted of equal numbers of competing 

events. In the communications task, these comprised both 

own-ship, and other-ship auditory instructions. Participants 

only needed to respond to own-ship events. In the monitoring 

task, participants were asked to monitor for the onset of a red 

light, the offset of a green light, and for indicators on the four 

scale measures to “stick” in the upper or lower region. All of 

these events required a click before a 10-second timeout in 

response to reset the indicator. Events in the resource 

management task were failures of the eight different pumps 

that regulate the flow of fuel to two main, constantly depleting 

tanks. When a pump fails, participants had to route the flow 

through activating or deactivating other pumps until the failed 

pump reset after 30s. 

 

Measures 

 

Performance on the CODDMAN components with 

AutoCAMS was operationalized using the following metrics: 

Monitoring: The average number of inspections per 

minute was used to determine how often an individual was 

checking both Oxygen and Nitrogen levels to ensure that they 

were within range.  

Detection: A visually salient alarm (changes from 

green to red) was used to notify the participant that a failure 

was present. When using such an “alarm” we measured the 

time to detect a failure as the difference in time between the 

occurrence of the failure (e.g., alarm changes from green to 

red) and the time of the first diagnosing action in AutoCAMS. 

Typically, poor monitoring behavior is related to poor ability 

to detect failures (e.g., Metzger & Parasuraman, 2005). 

However, in this experiment, we anticipated that these two 

measures would be independent, as the alarm indicated a 

failure without necessitating any monitoring clicks.  

Diagnosis: Diagnostic accuracy was calculated as the 

ratio of the number of correct repairs to the number of total 

repairs. The completeness of the diagnostic process reflects 

the number of steps (out of 5) taken to be sure of any one 

diagnosis. A dichotomous measure was also used to identify 

whether a participant was able to successfully repair the 

failure in the time allotted.  

Fault Management: The fault management success of 

the participant in keeping levels within range was measured by 

the time (in seconds) that the failing system (Oxygen or 

Nitrogen) spent outside of the target range.  

 

RESULTS 

 

AutoCAMS 

The data presented includes data from the third 

routine failure that participants encountered which included 

automated decision support (“Auto”). Data from the “first 

failure” (FF) of AFIRA decision support in block 3, and the 

“second failure” (2F) of AFIRA in block 4, are also presented.  

 

Monitoring. Frequency of monitoring clicks was collected 

from before the failure was injected (pre-failure), as shown in 

Figure 2.  

  
Figure 2. Monitoring behavior across failure types by fatigue 

condition. Black dashed line shows circadian low, solid grey 

line circadian high participants. (Error bars show standard 

error). 
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There was a significant main effect of time of day on 

monitoring behavior (F(1,41)= 4.50, p< .05) where 

participants performing during circadian low monitored the 

Oxygen and Nitrogen systems more than those who were 

circadian high, replicating the trend found by Manzey et al. 

(2009). There was a significant main effect of the failure type 

(Wilks’ λ = .84, F(2,40)= 3.89, p< .05) consistent with less 

monitoring over time. The failure type by time of day 

interaction was marginally non-significant (Wilks’ λ = .89, 

F(2,40)= 2.60, p= .09). Importantly, in the case when the 

automation failed for the first time (FF) providing incorrect 

advice, those participants who were circadian low initiated 

more monitoring clicks per minute, compared to the circadian 

high group (t(47)= 2.28, p< .05, d= .67). Once the decision 

support system had failed once, both groups showed similar 

monitoring behavior (t(43)= 0.94, p> .05, d= .29), within the 

trial prior to the second failure (2F). 

 

Detection. Consistent with the presence of the master alarm to 

aid detection, there was no main effect of time of day 

condition (F(1,39)<1), with times to the first action the same 

for the circadian low participants (M= 6.71, SE= .79) 

compared to the circadian high participants (M= 6.79, SE= 

.87). There was no main effect of failure type (Wilks’ λ = .92, 

F(2,40)= 1.71,  > .05), and no significant time of day by 

failure type interaction (Wilks’ λ = .94, F(2,39)= 1.18, p> .05).  

 

Diagnosis. 

Number of diagnostic steps taken. For the diagnostic steps 

undertaken, there was a main effect of failure type, with 

increased elements of diagnosis carried out prior to a repair in 

the 2F condition (Wilks’ λ = .27, F(2,41)= 56.62, p< .01). 

There was no significant main effect of time of day (F(1,42)= 

1.09, p> .05). There was a marginally non-significant time of 

day by failure type interaction (Wilks’ λ = .88, F(2,41)= 2.73, 

p= .08). The two groups were similar on the AFIRA-supported 

failure and the second failure. However, on the first failure, 

the low circadian group actually performed better, in terms of 

their diagnostic thoroughness, reacting by increasing their 

diagnostic effort when presented with an unsignaled 

automation failure with incorrect advice compared to the 

previous correct automation advice (t(24)= 2.45, p< .05). In 

contrast the high circadian group showed complacency in 

treating the incorrect advice the same as correct advice (t(21)= 

0.00, p> .05). Such an advantage for the circadian low group is 

plausibly related to their more vigilant monitoring behavior 

(see Figure 3). 

 

Diagnostic accuracy. There was a significant main effect of 

failure type (Wilks’ λ = .31, F(2,41) = 44.69, p< .01), where 

participants’ accuracy dipped on the unexpected first failure of 

the decision support system, and remained somewhat lower 

with the support (Auto: M= .89, SE= .04; FF: M= .17, SE= 

.05; 2F: M= .66, SE= .04). There was no significant main 

effect of time of day condition (F(1,41)= 1.33, p> .05) and no 

significant failure type by time of day interaction (Wilks’ λ = 

.998, F(2,41)< 1).  

 
Figure 3. Confirmatory diagnostic steps prior to first repair 

attempt across failures types by fatigue condition. Black 

dashed line shows circadian low, solid grey line circadian high 

participants. (Error bars show standard error.) 

 

Failure Management. There was a significant main effect of 

failure type (Wilks’ λ = .58, F(2,41)= 15.08, p< .01), where 

the unexpected first failure of the decision support system left 

the affected system out of range longer, and also proved 

harder to maintain during the second automation failure 

(Auto: M= 84.9s, SE =13.9; FF: M= 177.4s, SE= 11.9; 2F: 

M= 130.2s, SE= 7.3). There was no significant main effect of 

time of day condition (F(1,42)< 1) and there was no 

significant failure type by time of day interaction (Wilks’ λ = 

.98, F(2,41)< 1).  

 

Multi Attribute Task Battery  

Performance in MATB was separated into that of 

four main tasks; responding to the communications events 

quickly and accurately, keeping error in the resource 

management and tracking tasks low, and responding quickly 

and accurately to the monitoring task events. No differences in 

performance were found between circadian high and low for 

reaction time to communications events (F<1), their accuracy 

(F(1,42)= 1.67, p> .05), tracking error (F<1) or a log 

transform of resource management error (F(1,42)= 3.01, p= 

.09). The marginally non-significant effect in resource 

management showed the circadian low group had slightly less 

error (M= 2.46, SE= .09) than the circadian high group (M= 

2.66, SE= .07). 

 Only monitoring evinced a significant reduction in 

performance under circadian low overall. Of the three events 

to be monitored, a scale deflection, a green light offset and a 

red light onset, the latter of these showed a large and highly 

significant decrement in detection rate, from 85% to 64% in 

the circadian low condition, relative to the circadian high 

condition after correcting for violations of Levene’s test 

(t(35)= 2.56, p< .05). This decrement only appeared when the 

concurrent tracking task was at its difficult level, and hence 

the monitoring task, generally rated as lowest priority 

(Gutzwiller et al., 2014) received the fewest resources. 

Additionally, there was no impact of circadian time on overall 

switching frequency (t(42)= -1.43, p= .16). 
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DISCUSSION 

 

The present experiment examined three hypotheses 

regarding the effect of circadian-induced fatigue on 

performance. This fatigue manipulation was employed as a 

proxy for other variables – total sleep disruption and multiple 

nights sleep restriction – which had been observed in our 

meta-analyses to produce qualitatively equivalent effects 

(Wickens, Hutchins et al., 2015). Within the constraints of our 

current population, the circadian manipulation proved to be 

the most ready way of inducing sleep disruption in a 

controlled manner to examine the predictions of, and extend, 

the CODDMAN model. 

 First, based on the findings of the meta-analyses, in 

contrast with other findings in the fatigue literature, we 

hypothesized that the effects would be more pronounced in 

simple, rather than in more complex tasks. Across all tasks, 

from both platforms (AutoCAMS and MATB) a differential 

trend was observed here, consistent with the hypothesis. That 

is, the complex task components of diagnosis and management 

(in AutoCAMS) and the multi-tasking components (in MATB) 

were, with one exception, not degraded at all by circadian 

induced fatigue. Thus, we argue that the complexity of these 

tasks, and their general interest and engagement, was 

sufficient to mobilize compensatory arousal and counteract 

any possible fatigue-related decrements. Furthermore, with a 

reasonable sample size in the current study, our statistical 

power available to detect large effects of the sort to have 

practical impact on real-world task performance ought to have 

been sufficient.  

The notable exception was red-light monitoring in 

MATB, precisely the kind of task found to be most disrupted 

by fatigue (Lim & Dinges, 2010). Subjective ratings had 

shown this task to be both boring, and of low subjective 

priority (Gutzwiller et al., 2014). 

 Our other two hypotheses addressed tasks that might 

otherwise have been anticipated, in the context of the 

CODDMAN model, to have been disrupted by fatigue: pre-

failure monitoring and failure detection in AutoCAMS. 

Regarding pre-failure monitoring, we observed the same 

active engagement compensatory effects of circadian-induced 

fatigue that Manzey et al. (2009) had observed, under sleep 

deprivation. Thus, the data suggest that when individuals are 

at low points in their circadian rhythm, they engage in more 

active monitoring of the system, an engagement that actually 

served them well in their diagnosis on the first failure without 

decision support. Such a finding implies that systems that 

allow operators or automation to adapt the supervisory role to 

reflect the circadian cycle might be beneficial. 

 Regarding detection of the AutoCAMS failures in 

stage 2 of the CODDMAN model, in the current experiment, 

we did not find differences in the time to detect a failure. 

Although we identified detection as a simple task where one 

might expect to see a difference, any deficit was likely 

mitigated by the visually salient alarm in combination with the 

AFIRA dialogue box, which also indicated the presence of an 

error. With these two attention-grabbing features present at the 

time of the failure, the presence of a failure was noticeable 

even in a state of fatigue. 

 Thus, while generally confirming the hypotheses, our 

experimental results were slightly surprising in revealing the 

near complete absence of fatigue-related decrements in all 

aspects of complex performance. The meta-analysis after all, 

had not shown such decrements to be absent; only of smaller 

magnitude than for simpler vigilance, detection, and reaction-

time tasks. In response, we can only infer that our imposition 

of circadian fatigue turned out to be a less-powerful stressor 

than we had anticipated, in the absence of accompanying sleep 

deprivation which has been found to amplify circadian night 

effects (see Wickens, Hutchins et al., 2015). 
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