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The Magnetospheric Multiscale (MMS) mission consists of four identically in-
strumented, spin-stabilized observatories elliptically orbiting the Earth in a tetra-
hedron formation. The on-board attitude control system adjusts the angular mo-
mentum of the system using a generalized thruster-actuated control system that
simultaneously manages precession, nutation and spin. Originally developed us-
ing Lyapunov control-theory with rate-feedback, a published algorithm has been
augmented to provide a balanced attitude/rate response using a single weighting
parameter. This approach overcomes an orientation sign-ambiguity in the existing
formulation, and also allows for a smoothly tuned-response applicable to both a
compact/agile spacecraft, as well as one with large articulating appendages.

INTRODUCTION

The Magnetospheric Multiscale (MMS) mission, launched on March 13, 2015, is the fourth mis-
sion of NASA’s Solar Terrestrial Probe program. The MMS mission consists of four identically
instrumented observatories that function as a constellation to provide the first definitive study of
magnetic reconnection in space.

Since it is frequently desirable to isolate electric and magnetic field sensors from stray effects
caused by the spacecraft’s core-body, the suite of instruments on MMS includes six radial and
two axial instrument-booms with deployed lengths ranging from 5–60 meters (see Figure 1). The
observatory is spin-stabilized about its positive z-axis with a nominal rate slightly above 3 rev/min
(RPM). The spin is also used to maintain tension in the four radial wire booms.

Both attitude and orbital control of the observatories are accomplished using twelve hydrazine
mono-propellant thrusters—four AMPAC 1-lbf (4.4 N) thrusters are directed axially (±z), and eight
Aerojet 4-lbf (17.8 N) thrusters radially (±y). The minimum impulse bit for the Aerojet designed
thrusters ranges throughout the mission from 0.13–0.26 N-m-sec, which corresponds to a 20 mil-
lisecond pulse.

An assortment of attitude control requirements were levied upon the system. Each of these cri-
teria are to be achieved for a fully-deployed observatory configuration. These requirements include
the capability to orient the spacecraft’s spin-axis 10-degrees from the ecliptic normal, modify ob-
servatory spin rate to within 0.2 RPM of the commanded level, adjust the observatory orientation
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Figure 1. MMS Observatory Fully-Deployed (top) and Stowed (bottom)

to maintain optimal science-data gathering in the presence of gravity gradient disturbances and so-
lar aspect angle motion, and perform these maneuvers so as to minimize wire boom in-plane and
out-of-plane deflection angles.

Attitude and rate determination for MMS is achieved by using a Multiplicative Extended Kalman
Filter1, 2 to process the quaternion measurements produced by the µASC Star Tracker System (STS),
provided by the Technical University of Denmark (DTU). The STS consists of internally redundant
electronics, housed within a single enclosure, that interfaces with four Charge-Coupled Device cam-
era head units. The STS provides time-stamped attitude quaternion data packets at a 4 Hz telemetry
rate. It has a 3σ performance transverse and bore-sight axis accuracy of 60 arcsec and 200 arcsec,
respectively. The STS has a spin rate capability of up to 4 RPM, and has demonstrated limited
functionality up to 5 RPM.

MMS is also equipped with an Adcole digital sun-sensor for use in contingencies, and by the
science suite as a time-reference.

One possible scheme for controlling a spacecraft’s spin-dynamics is to use decoupled momentum
adjustment maneuvers. Full system control would be achieved via a combination of sequential
precession maneuvers, spin-rate adjustments, and active/passive nutation damping.3 There were
two atypical aspects of the MMS mission that made this traditional approach an unattractive design
choice—the long flexible wire booms, and the operational cadence of managing a formation of
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four spacecraft in real-time with limited communication-network and staffing resources. With the
four symmetric Spin-plane Double Probe (SDP) wire booms extending 60-meters radially from
the central bus, timing open-loop thruster pulses to accurately adjust the momentum of the system
proved to be a non-trivial task. Furthermore, the prospect of iterating between precession, spin and
nutation adjustments did not seem tractable given both the frequency of planned maneuvers and the
complex gyrodynamic cross-coupling after all appendages are deployed.

For all of the above reasons, a unified closed-loop momentum-management design was sought
that would simultaneously control all the aspects of spin-stabilization without the need for iterative
maneuvering, extended settling-times, or dedicated damping hardware. Ultimately, the complete
solution for MMS was found by expanding upon the framework originally developed by Reynolds
and Creamer for the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) mission.4

Flight results from the MMS fleet’s commissioning maneuvers have proven the final Delta-H Mode
controller design to be both accurate and operationally simple. Furthermore, with only a minimal
number of parameter changes, the same controller performed well for both the all-stowed and fully-
deployed observatory configurations.

LYAPUNOV CONTROL

Lyapunov’s direct method provides a tool for making analytical stability claims of nonlinear
systems (such as a tri-axial spinning spacecraft) with the major benefit of not having to explicitly
solve the nonlinear differential equations. Simply paraphrased, if a Lyapunov function V (x) exists
for a (nonlinear) dynamical system ẋ = f(x), then the system is stable about an (equilibrium)
point. A scalar function, V (x), qualifies as a Lyapunov function for the dynamical system if it is
continuous and there exists a neighborhood about the equilibrium point such that for any x,

1. V (x) is a positive definite function about the origin

2. V (x) has a continuous partial derivative

3. V̇ (x) is negative semi-definite

Note that while the Lyapunov function explicitly depends only on the state-vector x, V (x) is time-
varying because x(t) is itself time-varying.5

If the expression of the system dynamics, ẋ = f(x), includes closed-loop control inputs u(t),
then the Lyapunov direct method also becomes a tool for control law design. Specifically, the control
input u is applied in such a manner that the first derivative of the selected Lyapunov function, V̇ (x),
remains negative semidefinite and the applied control is stabilizing, i.e. drives the system towards
our desired reference state (or trajectory).

A common barrier in applying Lyapunov’s direct method is frequently the selection of a “good”
Lyapunov function. This is the only part of the analysis that requires some intuition about the
desired behavior of the system—the remainder of the control-design procedure is quite systematic.
In order to alleviate some of the murkiness surrounding function selection, the following subsections
examine a family of Lyapunov functions and their practical implications for control of spinning
spacecraft.

Rate Control (Spin and Nutation)

In the case of a rigid-body spacecraft equipped with actuators capable of introducing a control-
torque τ (u), the appropriate system dynamics (i.e. ẋ = f(x,u)) are Euler’s rotational equation
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expressed as matrices (bold upper-case symbols) and column vectors (lower-case bold symbols)

τ = ḣ + [ω]×h (1)

= Iω̇ + [ω]×Iω (2)

ω̇ = I−1
(
τ − ω×Iω

)
(3)

where h is the body’s angular momentum about its center-of-mass, ω is the angular rate of the
body (and body-fixed frame) with respect to an inertial reference, I is the second mass-moment of
inertia matrix about the center-of-mass, an over-dot ˙( ) indicates the time-derivative with respect
to the body-frame, and the superscript expression [ ]× indicates a skew-symmetric 3 × 3 matrix
formed from its base vector. All quantities are expressed in a body-fixed frame whose origin is at
the center-of-mass.

ω× =

ωxωy
ωz

× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (4)

With mechanical systems, a good place to start when considering Lyapunov function candidates is
the system’s kinetic energy. It has the desired property of being both a scalar and quadratic in rate
(i.e. positive definite). The Lyapunov function V1 equal to the rotational kinetic energy Ek of a rigid
body is,

V1 = Ek =
1
2
ωTIω (5)

=
1
2
hTI−1h (6)

where the superscript T denotes a matrix transpose. Taking the total time-derivative of Lyapunov
function V1 yields

V̇1 =
d

dt
V1 =

∂V

∂x
ẋ =

∂V

∂x
f(x) (7)

=
1
2
· d
dt

(
ωTIω

)
(8)

= ωTIω̇ (9)

= ωT
(
τ − ω×Iω

)
(10)

= ωTτ (11)

Enforcing Lyapunov stability requires that V̇1 ≤ 0 and that implies the dot-product ωTτ is also neg-
ative semi-definite—in other words the control-torque τ (u) must always be opposite the direction
of the rate (or zero). Two details of the mathematics are worth noting. First, the scalar triple-product
relationship was used, which states that if any two vectors in the product aT[b]×c are equal (e.g.
a = b, a = c, etc.) then the entire product is zero. Second, taking the time-derivative of the scalar
function V1 consisting of quantities expressed in the body-frame involves taking local derivatives of
ω and I with respect to the body-frame (e.g. I is constant).

While function V1 produced a trivial result—a pure rate damper—a more useful control law may
be obtained by moving the reference point for the velocity state away from the origin. This is done
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through a change of variables

δh = h− href (12)

where we select href to be a desired target for the angular momentum expressed in the body-frame.
Applying the change of variables to Eq. (6) results in new candidate function, V2, as follows

V2 =
1
2
δhTI−1δh (13)

With first-derivative

V̇2 = δhTI−1δḣ (14)

= δhTI−1
(
ḣ− ḣref

)
(15)

If the momentum reference target is chosen to be equivalent to a constant magnitude spin ω0 about
the major principal axis unit-direction p̂3 (where I3 > I2 ≥ I1), then ḣref = 0 and Eq. (15) takes
the form

V̇2 = δhTI−1
(
τ − ω×h

)
(16)

= (ω − ωref)
T τ + ωT

refω
×Iω (17)

where ωref = ω0p̂3. Here the negative semi-definite requirement V̇2 ≤ 0 for stability indicates that
the control-torque should only be applied when it is aligned opposite the direction of the rate-error
and exceeds a certain threshold. The result is combined spin and nutation control.

This is simple logic to implement in a digital controller, given a body-fixed actuator such as a
thruster. If instead of a thruster, the designer has more freedom regarding the direction of the applied
torque, then more analysis is required to determined the optimal direction to apply the control. That
problem, along with other efficiency concerns, will be discussed in later sections.

By now the methodology for constructing Lyapunov-based controllers has emerged—define a
quadratic cost function in terms of the states, take its derivative, substitute in the system dynamics,
and finally construct a control-law constraining the derivative to be negative semi-definite. With
this in mind, we explore two other Lyapunov functions that were used on flight systems and their
performance implications.

Reynolds and Creamer Method (Spin, Nutation, and Pointing)

Until this point, all Lyapunov functions presented have been based purely on the rotational
kinetic-energy of the system—solely functions of angular velocity. Like any traditional rate-only
controller, no consideration is given to any of the positional-states. For the RHESSI mission,
Reynolds and Cramer4 developed a Lyapunov function that included a term quadratic in the an-
gular momentum pointing-error linearly combined with a modified energy term. Their result has
been recast in the present notation below

Vrc =
1
2

(h− hpt)
T (h− hpt)︸ ︷︷ ︸

pointing error

+
[

1
2
hTI−1h− 1

2
hT (I31)−1 h

]
︸ ︷︷ ︸

spin-rate “energy” error

(18)

=
1
2

(h− hpt)
T (h− hpt) +

1
2
hT
(
I3I−1 − 1

)
h (19)
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where I3 is the largest principal moment of inertia (i.e. maximum eigenvalue of I), 1 is the 3 × 3
identity matrix, and hpt is the desired pointing momentum expressed in the body-frame. The angular
momentum pointing-reference can be further expanded as

hpt = H0 A
b←i

ŝi (20)

= I3ω0 A
b←i

ŝi (21)

whereH0 [ω0] is a constant representing the desired angular momentum [rate] magnitude, ŝi is unit-
vector expressed in the inertial-frame that represents a desired pointing direction (fixed) in inertial
space, and the symbol A we use generally to denote an attitude direction cosine matrix that, in this
instance, transforms a vector from the inertial to body-fixed frame.

Differentiating the Reynolds-Creamer Lyapunov function produces

V̇rc = (h− hpt)
T
[
ḣ− ḣpt

]
+ hT

(
I3I−1 − 1

)
ḣ (22)

= (h− hpt)
T

[
τ − ω×h−H0( Ȧ

b←i
ŝi + A

b←i
˙̂si)
]

+ hT
(
I3I−1 − 1

) (
τ − ω×h

)
(23)

= (h− hpt)
T [τ − ω× (h− hpt)

]
+ hT

(
I3I−1 − 1

) (
τ − ω×h

)
(24)

= (h− hpt)
T τ + hT

(
I3I−1 − 1

)
τ (25)

= I3

(
ω − ω0 A

b←i
ŝi

)T

τ (26)

= I3 · δωT
rc τ (27)

Here again, liberal use was made of the scalar triple product identities to eliminate terms. The
properties of an inertial-fixed target ( ˙̂si = 0), as well as the definition of the attitude matrix derivative
(Ȧ = −Aω×) were also used in order to obtain the final expression. Finally, a new symbol for the
rate-error (δωrc ≡ ω − ω0 A

b←i
ŝi) was introduced.

The control law based on Vrc states that thrusters—or in the case of RHESSI, magnetic torque-
rods—should only apply a moment to the spacecraft if the torque is aligned in the direction of the
negative rate error. This guarantees convergence to a major-axis spin of the desired magnitude, and
also pointing of the spacecraft angular momentum in the proper orientation in inertial space. In
many ways, this is the complete solution for spinning spacecraft—simultaneous spin, nutation, and
precession control with computationally simple logic.

Comparison to Quaternion-Feedback Control

For additional context, compare the Reynolds-Creamer control-law to the more widely known
quaternion-feedback6 control used to reorient (slew) three-axis stabilized spacecraft. The stability
of the method was first demonstrated by Wie and Barba7 using Lyapunov’s direct method and a
Lyapunov function equivalent to

Vqf =
1
2
ωIω +

1
2
kpδqT

1:3δq1:3 +
1
2
kp(1− δq4)2 ≥ 0 (28)

where δq1:3 and q4 are, respectively, the vector and scalar components of the attitude error quater-
nion (δq ≡ q ⊗ q−1

ref ), and kp is a positive scalar gain.1 This method achieves a final (inertial) ref-
erence attitude and nullifies the angular rate. The Reynolds-Creamer control-law achieves a result
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similar to quaternion-feedback, but allows for a non-zero final rate and justifiably ignores clocking
about the target (because of spin). One of the intended goals of this work is to raise the profile
of Reynold’s and Creamer’s wonderfully intuitive and practical result. The present authors have
become convinced this spin-stabilization technique should be a staple in every control engineer’s
toolbox.

Path Weighted Control (Nutation-Limiting, Spin-Preserving)

After adopting the Reynolds-Creamer control-law for MMS momentum management, and inte-
grating its logic into a high-fidelity time-domain simulation of the system dynamics, a number of
large-slew test-cases exposed an undesirable behavior of the controller. As similarly noted in the
original development of quaternion-feedback,7 the path taken by the system is not constrained by
the control-logic. In the case of MMS, concerns were less focused on slew-path optimality, but
instead on a more practical detriment—the rate could be driven through (or arbitrarily close) to
zero-spin. This can be seen directly in the rate-error term of Eq. (26)—if ω and ŝi are diametrically
opposed, the torque that makes V̇rc negative semi-definite is opposite the current spin-vector.

Because of the need to maintain SDP wire boom tension (for the fully-deployed observatory),
minimize transverse rates for the DTU star sensors, and preserve spin-polarity for the Adcole digital
sun-sensors, arbitrary angular rates were an unacceptable artifact for the MMS design. In order to
mitigate the problem, the Reynolds-Creamer Lyapunov function is augmented with a third term
whose purpose is to limit nutation. This is implemented with an associated gain kspin that allows
for a continuous “mixing” of this new constraint with the existing pointing-error term. Linearly
combining several elemental Lyapunov functions is a common technique.5 The new path weighted
control-Lyapunov function used on MMS becomes

Vpw = kspin

2 (h− hpt)
T (h− hpt) + 1−kspin

2 (h− hb)T (h− hb) + 1
2h

T
(
I3I−1 − 1

)
h (29)

= kspin

2 · δh
T
ptδhpt︸ ︷︷ ︸

pointing error term

+ 1−kspin

2 · δhT
b δhb︸ ︷︷ ︸

nutation term

+ 1
2h

T
(
I3I−1 − 1

)
h︸ ︷︷ ︸

spin-rate “energy” error

(30)

In addition to the ad hoc angular velocity (kinetic-energy) term of the Reynolds-Creamer formula-
tion, this new Lyapunov function contains two “potential-energy” terms—one constraining direction
against an inertial target (pointing error term) and one against a body-fixed target (nutation term).

When the body-fixed angular momentum target is taken to be in the direction of the major prin-
cipal axis (p̂3), so that hb = ω0p̂3, the system momentum is “encouraged” to remain in a region
near a major-axis spin. This by definition limits nutation—the divergence of the angular momentum
from a body’s principal axis. The degree to which it is allowed to nutate is controlled by the mixing
gain kspin. This weighting is a necessary feature, because some nutation must be introduced into
the system in order to reorient inertially. Furthermore, while the third term in Eq. (30)—the kinetic
energy error—does by itself guarantee convergence to a major-axis spin, it does not discriminate on
the final polarity. This is due to the fact that the energy is quadratic in angular velocity. Adding the
additional nutation/potential term resolves this ambiguity.
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Following a very similar derivation as the previous case, the associated time-derivative of the new
Lyapunov function takes the form

V̇pw = I3

[
ω − ω0

(
kspin A

b←i
ŝi + (1− kspin) p̂3

)]T

τ (31)

= I3 δω
T
pw τ (32)

and the logic necessary to ensure V̇pw is negative semi-definite is that the control-torque should only
be applied in a direction opposite this new mixed angular rate error-“cocktail”, δωpw.

In Figure 2, a family of simulations shows the effect of different values for kspin with a fully-
stowed MMS spacecraft performing a 90◦ slew. Immediately evident in the top plot is that, with
kspin set to zero, the spacecraft completely fails to maneuver. The bottom plot shows why—no
nutation was allowed to develop. The result of nullifying kspin causes the ŝ pointing-term to drop
out of of Eq. (30). The inertial target is lost, and the controller acts solely as a nutation damper.

This suggests our parameter-naming may be a slight misnomer. Perhaps “knut” would be a more
descriptive choice. Nevertheless, the kspin label is preserved in this presentation to maintain conti-
nuity with its MMS heritage, and the parameter represents the emphasis on orienting the spin-axis
inertially.

Figure 2. Comparison of 90◦ Slew Performance with Various Values for kspin

On the other end of the spectrum, with kspin set to unity, the control-function is identical to the
Reynolds-Creamer method. Figure 2 shows that pointing is aggressively targeted, and the controller
has no regard for nutation which builds or cancels intermittently. Slew times are the shortest, but
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the nutation can increase to unacceptable limits (for MMS) and as will be shown next, the spin-rate
can vary significantly.

A value of 0.1 for kspin seems to put a reasonable upper-limit on nutation, and resulted in nearly-
linear slew times (convenient for planning)—with asymptotic “clean-up” of both the pointing and
nutation errors near the end of a maneuver.

The next pair of plots (Figure 4) is for an even larger slew of 160◦. In this case, the top plot is
again pointing-error, but the bottom plot is the spin-rate in revolutions-per-minute. The trivial case
of kspin = 0 was also dropped from this set of runs. The surprising result is that for kspin = 1 (i.e.
the Reynolds-Creamer control-law), the slew-time is dramatically shorter, but the final spin is now
about the negative z-axis. The controller has first de-spun the spacecraft—“tunneling” through zero
momentum—and then restores spin with the opposite polarity in order to satisfy the momentum-
direction-in-inertial-space (i.e. first-term) of the Lyapunov function Vpw. When momentum reaches
zero, pointing is not defined, so we see a discontinuous jump in the top plot at approximately 4-
minutes for both a kspin of 0.9 and 1.

Figure 3. Angular Momentum Paths on
the Celestial Sphere for 160◦ Slew Cases

For the remaining values of kspin, the angular rate
about the major principal axis dips, but does not be-
come negative. Also note that the spin-rate with
kspin of 0.9 does not reach the inverse of the origi-
nal 3 RPM. This could be an artifact of the modified
energy-term that the Reynolds-Creamer and the path
weighted formulation share, or a partitioning of the
energy due to the partial weighting, but the actual
root-cause has not been invested by the authors at
the present time since it was not pertinent to MMS.

Without the additional nutation term in the path
weighed Lyapunov function, there is nothing to “an-
chor” the angular-momentum to the body-axes. As a
result, for large angles, the system does not slew with
the intuitive great circle type of motion one might
expect. By restricting the angular momentum to remain in the vicinity of a body-fixed vector (in
our case the major principal axis, p̂3), the controller is forced to “drag” the body-axis along with
the precession. This notion of great circle paths is the inspiration for the name of the modified
control-law, and the weighting in “path weighted” is obviously the free-parameter, kspin. Figure 3
shows the projection of the spacecraft’s angular momentum on an inertial-fixed unit sphere for the
160◦ slew cases, and offers an alternative way to visualize the effect the free-parameter has on a
body’s motion.

MMS DELTA-H CONTROLLER DESIGN

Moving now from general theory to the specifics of the MMS implementation, Eq. (30) provides
a constraint on the polarity of a body-fixed thruster torque τ that can be checked easily against the
Lyapunov constraint through a simple inner-product multiplication with the vector in brackets—the
resulting scalar must be negative for a given combination of thrusters to be a candidate for actuation.
However, there are a few additional considerations made in the MMS design that elevates a possible
candidate first to an “eligible”, and then a “best” candidate. The next three subsections explore some
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Figure 4. Comparison of 160◦ Rigid-Body Slew Performance with Various Path Weights

these additional criteria with regard to efficiency, deadbands, and bandwidth. They are followed by
the topic of multi-body dynamics and associated stability. Finally, flight performance is compared
to simulation predictions for MMS’s largest fully-deployed slew, and then a collection of smaller
maintenance maneuvers.

Efficiency

Propellant efficiency is a primary consideration for any mission. While it would make sense to
only fire a thruster when its torque-axis is aligned as close to 180◦ away from the rate-error as
possible, this is not always practical. Instead, the inner-product resultant is checked not only for its
sign, but also its normalized magnitude. If the normalized magnitude is greater than the cosine of
an efficiency angle ε, then the torque is considered sufficiently well aligned. This logic is analogous
to Reynolds and Creamer’s presentation

if

cos ε <
[−δωpw]T τ
‖δωpw‖ ‖τ‖

=
[−δωpw]T âτ

‖δωpw‖
(33)

then

OK to fire thruster-bank
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where âτ is a unit vector along the torque axis. In a given control-cycle, MMS extends this check
to all moment-couples of thrusters, called “banks”, and tags the most efficient pair as candidates to
fire at the next opportunity. Before actually issuing the thruster commands, the controller makes a
few additional checks against both deadbands, and wait-counters as discussed below.

Making the cosine-efficiency-angle ε small reduces fuel-waste, but can also introduces issues of
coverage. MMS, like many spinners, relies on the natural motion of the angular rate in the body-
frame to bring the rate-error into alignment with a limited set of spin-plane thrusters. With too small
of an efficiency angle, it’s possible to introduce dead-zones that the badly-aligned angular rate-error
travels without ever triggering actuation.

Figure 5. Control Coverage on Body Sphere

This situation is shown pictorially in Figure 5 for
an efficiency angle of 16◦. The rate-error (blue)
must intersect one of the red small circles in order
to satisfy Eq. (33). Fortunately, multi-body dynam-
ics tend to disrupt the stability of some unfavorable
rate-error trajectories, and can actually improve the
effective coverage. MMS used this knowledge to
reduce its cosine-efficiency criteria shortly after its
perigee raise maneuvers—its last in the fully-stowed
configuration.

Deadbands

As the controller nears its target, deadbands are
effective tools for combating chatter (unproductive
and excessive control that attempts to correct for
noise or overshooting). For MMS a deadband was
achieved by limiting the size of the minimum pulse-duration for thruster commands. The MMS
thrusters (in conjunction with a GSFC designed valve-driver) was capable of executing pulses as
short as 20 msec—although in practice 50 msec was found to be a more effective lower limit. The
required size of a pulse is determined on-board at each control-cycle using a scalar approximation
of Euler’s rotational equation (τ = I∆ω/∆t), with the spacecraft’s second mass-moment of inertia
I and rate error δωpw projected along the thruster-bank’s torque-axis âτ so that

∆tpulse =
âT
τ I âτ
‖τ‖

· [−δωpw]T âτ (34)

The calculated pulse-duration ∆tpulse is also limited to be slightly shorter than a control-cycle.
When the SDP are deployed, the physical moment of inertia I is replaced with an “effective” inertia
as described in Zimbelman and Walker.8 The effective moment of inertia about the spin-axis is

Ieff ≡ Ibase +
(

rsdp

rsdp + Lsdp

)
Isdp (35)

where rsdp is the radial distance from the spin-axis to the SDP pivot-point, Lsdp is the distance along
the wire boom to the SDP’s center-of-mass, and Isdp is the SDP’s second mass-moment of inertia
about its own center-of-mass, as if it were a rigid rod. A similar expression is also used for the
effective inertias about the spacecraft’s transverse axes.
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Mode Auto-exit

MMS incorporated another feature in its controller design that was also intended to conserve
propellant at the end of a maneuver. The magnitude of the rate-error δωpw was fed through a digital
low-pass filter tuned to the behavior of our system. The system’s deadband was subtracted from the
filtered result, and the remainder compared against the auto-exit criteria. In order to protect against
over-shoot in this filter, a minimum and maximum time-in-mode requirement is enforced, and a
hysteresis count-down timer is also applied. Figure 6 shows the filtered/rectified rate-error for the
90◦ slew cases.

Figure 6. Auto-exit Criteria for 90◦ Slew Cases

Bandwidth

Skipping control-cycles via a digital wait-counter effectively reduces the bandwidth of the con-
troller. Like deadbands, this can help to reduce chatter caused by fighting the high-frequency noise
in the rate estimate. MMS adjusted its wait-counter settings depending on its boom deployment
state. In the section that follows, the effect of delays on low-frequency flexible body dynamics will
be discussed.

Appendage Multi-body Dynamics

Up until now, all of the discussion and examples have focused on the behavior of a spacecraft that
is well approximated by a rigid-body. However, when fully-deployed, the SDP wire booms span a
total of 120-meters in diameter and are far from rigid. While Lyapunov-control based on a function
that uses total mechanical energy is known to be very robust to the presence of modeling error5 (e.g.
inertia tensor), the SDP degrees of freedom do not explicitly appear in the work-energy relationship
that was used for the path weighted formulation. As a result, it remained an open-issue during
the MMS design phase if the Lyapunov stability guarantees would still apply. While a number of
analytic models for the system were used to provide insight on the system’s modes,9, 3, 10 a multi-
body Lyapunov function was never attempted. As the system analysts, the authors chose to instead
rely on Monte Carlo methods applied to time-domain simulations in order to verify both stability
and performance of the non-linear system using the path weighted controller.
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In the course of our investigations, it became evident that it was possible to slew the fully-
deployed spacecraft over an arbitrarily large path given a sufficient maneuver window. Inspired
by the way the gravity gradient environmental torque could slowly precess the angular momentum
of the spacecraft without exciting the SDP booms, we determined the key ingredients of a successful
strategy were: small thrusts and proper delays.

Figure 7. Comparison of 20◦ Multi-Body Slew Performance with Various Path Weights

Figure 7 shows a 20◦ slew for various values of the path-weighting variable kspin. What is inter-
esting to note is that for larger weights, the total system momentum (base-body + appendages) fails
to finish close to the target. Specifically, with a kspin of 1, the final pointing error is about 2.1◦. This
is due to the unobservable momentum of the SDP booms. The more aggressive slew, essentially
moves (and briefly holds) the base-body at the desired inertial attitude, leaving the booms behind.
After the auto-exit counter has timed out (around 38-minutes), the SDPs drag the base-body back
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to an attitude closer to the true system momentum. In contrast, the more gentle path (kspin = 0.1)
has a final true pointing error of less than 0.5◦, but takes over 73-minutes to satisfy the exit criteria.

The characteristic humps after mode-exit of the top plot in Figure 7, is the rectified coning of the
base-body. Its presence in the telemetered pointing-estimate is a good indication of the magnitude
of the SDP boom excitation that occurred during a maneuver (see also Figure 9).

Monte Carlo Performance Results

As part of the design process, Monte Carlo methods are used to access robustness of the con-
troller, both in terms of performance with plant-uncertainties and overall stability. For MMS, ex-
haustive Monte Carlo simulations were used to address these twin concerns. Following the statistical
methodology of Hanson and Beard,11 a 99% confidence criteria (1% consumer risk) was selected
that requires zero failures over a sample-size of 3410 runs.

This criteria was tested repeatedly using GSFC’s Freespace Simulation Environment12 to sta-
tistically vary over 250 model parameters—resulting in hundreds of thousands of time-domain
simulations of maneuvers at full model-fidelity. Figure 8 depicts one example of these results,
and is annotated with the performance criteria used to determine execution error acceptance for a
formation-maintenance class of Delta-H slews (i.e. 1.3◦ over 20-minutes to less than 0.2◦) that are
performed with the fully-deployed observatory immediately after a translational orbit-adjustment
ranging in size from 0–10 m/sec and capable of exciting up to 2.5◦ (amplitude) of wire boom os-
cillation (3σ). In the figure, the “post ∆V” angle (in blue) is the orbit-adjustment’s perturbation on
the initial pointing, so it will add (or subtract) to the total slew-size required of the Delta-H mode.

Figure 8. Monte Carlo Results for 3500 samples of a Formation Maintenance Class of Slews

MMS Mission Performance

In this section, some flight performance results of the MMS Delta-H Mode are shown for a 17◦

slew made by MMS-3 on July 8, 2015 (HA088) in the fully-deployed configuration. The plots in
Figure 9 show (in red) the telemetered flight-data along with the simulation predictions used to plan
the maneuver (in blue). In this instance, the simulation conservatively predicts more nutation than
the on-board flight-estimate shows, and is slightly faster at reaching the target. The difference is
within the expected bounds. The peak SDP out-of-plane (elevation) amplitude for this maneuver
was—from simulation—less than 1.74◦, and in-plane (azimuth) peaked at only 0.14◦. To some
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Figure 9. Flight Performance of an MMS-1 10◦ Slew Compared to Simulation (kspin = 0.1)

extent, the SDP excitation-levels were confirmed by the science-instrument’s telemetry, which can
detect displacements great than 5◦. As predicted by simulation, no oscillations were detected. Also,
the size of the pointing-error ”humps” in the flight telemetry after mode-exit (at 85-minutes) attests
to a well-managed amount of SDP motion for the mission’s largest fully-deployed slew.

As MMS nears the completion of its commissioning phase, the size and frequency of the maneu-
vers have become both smaller and more regular. The main driver for maintenance slews is to keep
the spin-axis canted 2.36–3.80◦ towards the sun for the remainder of the mission. Given a 40-minute
total maneuvering window, the Delta-H mode is required to precess the fully-deployed spacecraft’s
angular momentum by up to 2.6◦ an average frequency of less than once every two weeks using a
single (or equal pair of) maneuvers whose final pointing accuracy is 0.2◦ (3σ).

The table in Figure 10 shows the twelve most recent flight maneuvers that utilized Delta-H mode.
For the subset of slews that were allocated 20-minutes to complete, the sample mean µ̄ of the final
pointing error is 0.131◦, and the sample standard deviation σ̄ is 0.068◦. This targeting accuracy
plays a role in preventing loss of shadowing on some of the boom’s tip-sensors due to both solar
precession of the orbit (≈ 1◦/day), and gravity-gradient pointing disturbances over a two-week
period. The statistics will continued to be monitored closely as the mission progresses. A number
of command-able control parameters are available to tune the system further, if necessary.
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Maneuver
(DOY)

Observatory
ID

Maneuver
Duration

(min)

Magnitude of Slew
(degrees)

Final Pointing Error
Estimate
(degrees)

GS-095
(167,168)

1 40 2.49 0.24
2 40 2.66 0.29
3 20 0.87 0.25
4 40 2.39 0.15

DH-116 1 40 2.18 0.06

FI-116
(188)

2 20 1.43 0.06
3 20 1.07 0.16
4 20 1.18 0.11

FI-119
(190)

1 — — —
2 20 1.31 0.05
3 20 1.21 0.15
4 20 1.21 0.14

Figure 10. Formation Maintenance Maneuver Statistics

CONCLUSION

A new Lyapunov-based control-law has been presented that extends the work of Reynolds and
Creamer.4 It provides a complete solution to the coupled dynamics problems of precession, nu-
tation, and spin-rate control of a spinning spacecraft. Through a single free-parameter, a controls
engineer may adjust the nature of a slew-path—choosing between aggressive targeting, or benign
trajectories that preserve spin-stability.

Rigorous ground testing and on-orbit experience from the MMS mission have shown that the
derived controller is both robust and intuitively simple to use, even for a spacecraft with complex
appendage dynamics.
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